Let be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra we define the concept of an analytic functional and show that every positive analytic functional is integrable in the sense that it is of the form for an analytic vector of a unitary representation of . On the way to this result we derive criteria for the integrability of -representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.
For the matrix coefficient of a vector in a unitary representation of an analytic Fréchet–Lie group we show that is an analytic vector if and only if is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group extends to a global analytic function.
Soit un groupe de Lie–Banach connexe et simplement connexe. Sur l’algèbre enveloppante complexe de son algèbre de Lie nous définissons la notion de fonctionnelle analytique et montrons que chaque fonctionnelle analytique positive est integrable au sens où elle est de la forme pour un vecteur analytique d’une représentation unitaire de . Dans la preuve de ce résultat nous obtenons des critères pour l’integrabilité des -representations des algèbres de Lie en représentations de groupe unitaires.
Pour le coefficient matriciel d’un vecteur d’une représentation unitaire d’un groupe de Lie–Fréchet analytique nous montrons que est un vecteur analytique si et seulement si est analytique dans un voisinage de l’identité. En combinant ce résultat à ceux sur les fonctionnelles analytiques positives nous obtenons que chaque fonction analytique de type positive locale sur un group de Lie–Fréchet–BCH simplement connexe s’étend en une fonction analytique globale.
Keywords: Infinite dimensional Lie group, unitary representation, positive definite function, analytic vector, integrability of Lie algebra representations.
Mot clés : groupe de Lie de dimension infinie, représentation unitaire, fonction de type positif, vecteur analytique, integrabilité d’une représentation d’une algèbre de Lie
Neeb, Karl-H. 1
@article{AIF_2011__61_5_1839_0, author = {Neeb, Karl-H.}, title = {On {Analytic} {Vectors} for {Unitary} {Representations} of {Infinite} {Dimensional} {Lie} {Groups}}, journal = {Annales de l'Institut Fourier}, pages = {1839--1874}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {5}, year = {2011}, doi = {10.5802/aif.2660}, mrnumber = {2961842}, zbl = {1241.22023}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2660/} }
TY - JOUR AU - Neeb, Karl-H. TI - On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups JO - Annales de l'Institut Fourier PY - 2011 SP - 1839 EP - 1874 VL - 61 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2660/ DO - 10.5802/aif.2660 LA - en ID - AIF_2011__61_5_1839_0 ER -
%0 Journal Article %A Neeb, Karl-H. %T On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups %J Annales de l'Institut Fourier %D 2011 %P 1839-1874 %V 61 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2660/ %R 10.5802/aif.2660 %G en %F AIF_2011__61_5_1839_0
Neeb, Karl-H. On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups. Annales de l'Institut Fourier, Volume 61 (2011) no. 5, pp. 1839-1874. doi : 10.5802/aif.2660. https://aif.centre-mersenne.org/articles/10.5802/aif.2660/
[1] Integration of locally exponential Lie algebras of vector fields, Annals Global Analysis Geom., Volume 33:1 (2008), pp. 89-100 | DOI | MR | Zbl
[2] The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965
[3] A non-smooth continuous unitary representation of a Banach–Lie group, J. Lie Theory, Volume 18 (2008), pp. 933-936 | MR | Zbl
[4] Harmonic analysis on semigroups, Graduate Texts in Math., 100, Springer Verlag, Berlin, Heidelberg, New York, 1984 | MR | Zbl
[5] Analytic functions in topological vector spaces, Studia Math., Volume 39 (1971), pp. 77-112 | MR | Zbl
[6] Polynomials and multilinear mappings in topological vector spaces, Studia Math., Volume 39 (1971), pp. 59-76 | MR | Zbl
[7] Integral representations of Schwinger functionals and the moment problem over nuclear spaces, Comm. math. Phys., Volume 43:3 (1975), pp. 255-271 | DOI | MR | Zbl
[8] Lie Groups and Lie Algebras, Chapter 1–3, Springer Verlag, Berlin, 1989 | MR | Zbl
[9] Espaces vectoriels topologiques. Chap.1 à 5, Springer Verlag, Berlin, 2007
[10] Vecteurs analytiques dans les représentations de groupes de Lie, Amer. J. Math., Volume 80 (1958), pp. 131-145 | DOI | MR | Zbl
[11] Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups (arXiv:math.PR.0809.4979v1)
[12] Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. Series A, Indag. Math., Volume 26 (1964), pp. 15-31 | MR | Zbl
[13] Infinite Dimensional Spherical Analysis, COE Lectures Note, 10, Kyushu Univ., 2008 | MR | Zbl
[14] Simple facts about analytic vectors and integrability, Ann. Sci. École Norm. Sup. (4), Volume 5 (1972), pp. 423-434 | Numdam | MR | Zbl
[15] Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France, Volume 88 (1960), pp. 73-93 | Numdam | MR | Zbl
[16] Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb (Eds.), Volume 55, Banach Center Publications, 2002, pp. 43-59 | MR | Zbl
[17] Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples (book in preparation)
[18] Lie algebras of unbounded derivations, J. Funct. Anal., Volume 52 (1983), pp. 369-384 | DOI | MR | Zbl
[19] Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., Volume 143 (1969), pp. 55-76 | DOI | MR | Zbl
[20] Gårding domains and analytic vectors for quantum fields, J. Math. Phys., Volume 13 (1972), pp. 821-827 | DOI | MR | Zbl
[21] Extremal decompositions of Wightman functions and of states on nuclear -algebras by Choquet theory, Comm. Math. Phys., Volume 54:2 (1975), pp. 133-135 | DOI | MR | Zbl
[22] Operators and Representation Theory, Math. Studies, 147, North-Holland, 1988
[23] Analytic continuation of local representations of Lie groups, Pac. J. Math., Volume 125:2 (1986), pp. 397-408 | MR | Zbl
[24] Analytic continuation of local representations of symmetric spaces, J. Funct. Anal., Volume 70 (1987), pp. 304-322 | DOI | MR | Zbl
[25] Integral representations for locally defined positive definite functions on Lie groups, Int. J. Math., Volume 2:3 (1991), pp. 257-286 | DOI | MR | Zbl
[26] Hermitian positive definite kernels on homogeneous spaces I, Amer. Math. Soc. Transl. Ser. 2, Volume 34 (1963), pp. 69-108 | Zbl
[27] Global conformal invariance and quantum field theory, Comm. Math. Phys., Volume 41 (1975), pp. 203-234 | DOI | MR
[28] Continuous Linear Representations, Math. Studies, 168, North-Holland, 1992 | MR | Zbl
[29] Integrating representations of Banach–Lie algebras (arXiv:math.RT.1003.0999v1, 4 Mar 2010)
[30] Remarks on infinite-dimensional Lie groups, in DeWitt, B., Stora, R. (eds), “Relativité, groupes et topologie II” (Les Houches, 1983), North Holland, Amsterdam, 1984; 1007–1057
[31] Measurable, continuous and smooth vectors for semigroup and group representations, Memoirs of the Amer. Math. Soc., Volume 19 (1968), pp. 1-80 | MR | Zbl
[32] Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Not., Volume 2010:5 (2010), pp. 783-823 | MR | Zbl
[33] Holomorphy and Convexity in Lie Theory, Exp. in Math. series, 28, de Gruyter Verlag, Berlin, 2000 | MR | Zbl
[34] Towards a Lie theory of locally convex groups, Jap. J. Math. 3rd ser., Volume 1:2 (2006), pp. 291-468 | MR | Zbl
[35] On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal., Volume 259 (2010), pp. 2814-2855 | DOI | MR | Zbl
[36] Analytic vectors, Annals of Math., Volume 70:3 (1959), pp. 572-615 | DOI | MR | Zbl
[37] Unitary representations of infinite dimensional -pairs and the formalism of R. Howe, Representations of Lie Groups and Related Topics, Volume 7, Gordon and Breach Science Publ., 1990 | MR | Zbl
[38] On semigroups related to infinite dimensional groups, Topics in representation theory, Amer. Math. Soc., , Volume 2, Adv. Sov. mathematics, 1991, pp. 67-101 | MR | Zbl
[39] Self-adjoint algebras of unbounded operators, Comm. Math. Phys., Volume 21 (1971), pp. 85-124 | DOI | MR | Zbl
[40] Selfadjoint algebras of unbounded operators, II, Trans. Amer. Math. Soc., Volume 187:1 (1974), pp. 261-293 | MR | Zbl
[41] A Gårding domain for quantum fields, Comm. Math. Phys., Volume 14 (1969), pp. 336-346 | DOI | MR | Zbl
[42] Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, Academic Press, New York, 1975 | Zbl
[43] Functional Analysis, McGraw Hill, 1973 | MR | Zbl
[44] Spectral Theory of Families of Self-Adjoint Operators, Mathematics and its Applications (Soviet Series), Kluwer Acad. Publ., 1991 | MR
[45] Positive cones in enveloping algebras, Reports Math. Phys., Volume 14 (1978), pp. 385-404 | DOI | MR | Zbl
[46] Unbounded Operator Algebras and Representation Theory, Mathematics and its Applications (Soviet Series), 37, Birkhäuser Verlag, Basel, 1990 | MR | Zbl
[47] Probability, 2nd Edition, Graduate Texts in Math., 95, Springer, 1996 | MR | Zbl
[48] On the integrability of representations of finite dimensional real Lie algebras, Comm. Math. Phys., Volume 28 (1972), pp. 39-46 | DOI | MR | Zbl
[49] Harmonic analysis on semisimple Lie groups I, Springer Verlag, Berlin, Heidelberg, New York, 1972 | Zbl
Cited by Sources: