[Formes trilinéaires conformément invariantes sur la sphère]
À chaque nombre complexe
To each complex number
Keywords: Trilinear invariant forms, conformal group, meromorphic continuation
Mots-clés : formes trilinéaires invariantes, groupe conforme, prolongement méromorphe
Clerc, Jean-Louis 1 ; Ørsted, Bent 2
@article{AIF_2011__61_5_1807_0, author = {Clerc, Jean-Louis and {\O}rsted, Bent}, title = {Conformally invariant trilinear forms on the sphere}, journal = {Annales de l'Institut Fourier}, pages = {1807--1838}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {5}, year = {2011}, doi = {10.5802/aif.2659}, mrnumber = {2961841}, zbl = {1252.22008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2659/} }
TY - JOUR AU - Clerc, Jean-Louis AU - Ørsted, Bent TI - Conformally invariant trilinear forms on the sphere JO - Annales de l'Institut Fourier PY - 2011 SP - 1807 EP - 1838 VL - 61 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2659/ DO - 10.5802/aif.2659 LA - en ID - AIF_2011__61_5_1807_0 ER -
%0 Journal Article %A Clerc, Jean-Louis %A Ørsted, Bent %T Conformally invariant trilinear forms on the sphere %J Annales de l'Institut Fourier %D 2011 %P 1807-1838 %V 61 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2659/ %R 10.5802/aif.2659 %G en %F AIF_2011__61_5_1807_0
Clerc, Jean-Louis; Ørsted, Bent. Conformally invariant trilinear forms on the sphere. Annales de l'Institut Fourier, Tome 61 (2011) no. 5, pp. 1807-1838. doi : 10.5802/aif.2659. https://aif.centre-mersenne.org/articles/10.5802/aif.2659/
[1] Estimates of automorphic functions, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 19-37 | MR | Zbl
[2] Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, Volume 84 (1956), pp. 97-205 | Numdam | MR | Zbl
[3] Generalized Bernstein- Reznikov integrals (to be published in Mathematische Annalen, DOI 10.1007/ s0028-010-0516-4)
[4] Orbits of triples in the Shilov boundary of a bounded symmetric domain, Transform. Groups, Volume 11 (2006) no. 3, pp. 387-426 | DOI | MR | Zbl
[5] Invariant triple products, Int. J. Math. Math. Sci. (2006), pp. 22 (Art. ID 48274) | DOI | MR | Zbl
[6] Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977] (Properties and operations, Translated from the Russian by Eugene Saletan) | MR | Zbl
[7] The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1983 (Distribution theory and Fourier analysis) | MR | Zbl
[8] On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.), Volume 7 (1996) no. 1, pp. 67-96 | DOI | MR | Zbl
[9] On spherical double cones, J. Algebra, Volume 166 (1994) no. 1, pp. 142-157 | DOI | MR | Zbl
[10] Trilinear forms of
[11] Multiple flag varieties of finite type, Adv. Math., Volume 141 (1999) no. 1, pp. 97-118 | DOI | MR | Zbl
[12] Tensor products of unitary representations of the three-dimensional Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979) no. 4, p. 860-891, 967 | MR | Zbl
[13] Trilinear Lorentz invariant forms, Comm. Math. Phys., Volume 29 (1973), pp. 189-217 | DOI | MR
[14] Polynômes de Bernstein-Sato à plusieurs variables, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau, 1987 (Exp. No. XIX, 6) | Numdam | MR | Zbl
[15] Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France, Volume 91 (1963), pp. 289-433 | Numdam | MR | Zbl
[16] The principal series for a reductive symmetric space. I.
[17] Harmonic analysis on homogeneous spaces, Marcel Dekker Inc., New York, 1973 (Pure and Applied Mathematics, No. 19) | MR | Zbl
[18] Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972 (Die Grundlehren der mathematischen Wissenschaften, Band 188) | MR | Zbl
- Curved Versions of the Ovsienko–Redou Operators, International Mathematics Research Notices, Volume 2023 (2023) no. 19, p. 16904 | DOI:10.1093/imrn/rnad053
- SINGULAR CONFORMALLY INVARIANT TRILINEAR FORMS, II THE HIGHER MULTIPLICITY CASE, Transformation Groups, Volume 22 (2017) no. 3, p. 651 | DOI:10.1007/s00031-016-9404-7
- Knapp–Stein type intertwining operators for symmetric pairs, Advances in Mathematics, Volume 294 (2016), p. 256 | DOI:10.1016/j.aim.2016.02.024
- SINGULAR CONFORMALLY INVARIANT TRILINEAR FORMS, I THE MULTIPLICITY ONE THEOREM, Transformation Groups, Volume 21 (2016) no. 3, p. 619 | DOI:10.1007/s00031-016-9365-x
- Invariant trilinear forms for spherical degenerate principal series of complex symplectic groups, International Journal of Mathematics, Volume 26 (2015) no. 13, p. 1550107 | DOI:10.1142/s0129167x15501074
- Invariant trilinear forms on spherical principal series of real rank one semisimple Lie groups, International Journal of Mathematics, Volume 25 (2014) no. 03, p. 1450017 | DOI:10.1142/s0129167x14500177
- Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, Journal of Functional Analysis, Volume 262 (2012) no. 10, p. 4341 | DOI:10.1016/j.jfa.2012.02.021
Cité par 7 documents. Sources : Crossref