Conformally invariant trilinear forms on the sphere
[Formes trilinéaires conformément invariantes sur la sphère]
Annales de l'Institut Fourier, Tome 61 (2011) no. 5, pp. 1807-1838.

À chaque nombre complexe λ est associée une représentation πλ du groupe conforme SO0(1,n) sur 𝒞(Sn-1) (série principale sphérique). Pour chaque triplet (λ1,λ2,λ3), nous construisons une forme trilinéaire sur 𝒞(Sn-1)×𝒞(Sn-1)×𝒞(Sn-1) qui est invariante par πλ1πλ2πλ3. La forme trilinéaire, d’abord définie dans un ouvert de 3 est étendue méromorphiquement, avec des pôles simples en une famille explicite de plans de 3. Pour les valeurs génériques des paramètres, nous démontrons l’unicité d’une telle forme trilinéaire invariante.

To each complex number λ is associated a representation πλ of the conformal group SO0(1,n) on 𝒞(Sn-1) (spherical principal series). For three values λ1,λ2,λ3, we construct a trilinear form on 𝒞(Sn-1)×𝒞(Sn-1)×𝒞(Sn-1), which is invariant by πλ1πλ2πλ3. The trilinear form, first defined for (λ1,λ2,λ3) in an open set of 3 is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.

DOI : 10.5802/aif.2659
Classification : 22E45, 43A85
Keywords: Trilinear invariant forms, conformal group, meromorphic continuation
Mots-clés : formes trilinéaires invariantes, groupe conforme, prolongement méromorphe

Clerc, Jean-Louis 1 ; Ørsted, Bent 2

1 Université Henri Poincaré (Nancy 1) Institut Élie Cartan 54506 Vandoeuvre-lès-Nancy (France)
2 Matematisk Institut Byg. 430, Ny Munkegade 8000 Aarhus C (Denmark)
@article{AIF_2011__61_5_1807_0,
     author = {Clerc, Jean-Louis and {\O}rsted, Bent},
     title = {Conformally invariant trilinear forms on the sphere},
     journal = {Annales de l'Institut Fourier},
     pages = {1807--1838},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {5},
     year = {2011},
     doi = {10.5802/aif.2659},
     mrnumber = {2961841},
     zbl = {1252.22008},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2659/}
}
TY  - JOUR
AU  - Clerc, Jean-Louis
AU  - Ørsted, Bent
TI  - Conformally invariant trilinear forms on the sphere
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 1807
EP  - 1838
VL  - 61
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2659/
DO  - 10.5802/aif.2659
LA  - en
ID  - AIF_2011__61_5_1807_0
ER  - 
%0 Journal Article
%A Clerc, Jean-Louis
%A Ørsted, Bent
%T Conformally invariant trilinear forms on the sphere
%J Annales de l'Institut Fourier
%D 2011
%P 1807-1838
%V 61
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2659/
%R 10.5802/aif.2659
%G en
%F AIF_2011__61_5_1807_0
Clerc, Jean-Louis; Ørsted, Bent. Conformally invariant trilinear forms on the sphere. Annales de l'Institut Fourier, Tome 61 (2011) no. 5, pp. 1807-1838. doi : 10.5802/aif.2659. https://aif.centre-mersenne.org/articles/10.5802/aif.2659/

[1] Bernstein, Joseph; Reznikov, Andre Estimates of automorphic functions, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 19-37 | MR | Zbl

[2] Bruhat, François Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, Volume 84 (1956), pp. 97-205 | Numdam | MR | Zbl

[3] Clerc, Jean-Louis; Kobayashi, T.; Ørsted, B.; Pevzner, M. Generalized Bernstein- Reznikov integrals (to be published in Mathematische Annalen, DOI 10.1007/ s0028-010-0516-4)

[4] Clerc, Jean-Louis; Neeb, Karl-Hermann Orbits of triples in the Shilov boundary of a bounded symmetric domain, Transform. Groups, Volume 11 (2006) no. 3, pp. 387-426 | DOI | MR | Zbl

[5] Deitmar, Anton Invariant triple products, Int. J. Math. Math. Sci. (2006), pp. 22 (Art. ID 48274) | DOI | MR | Zbl

[6] Gelʼfand, I. M.; Shilov, G. E. Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977] (Properties and operations, Translated from the Russian by Eugene Saletan) | MR | Zbl

[7] Hörmander, Lars The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1983 (Distribution theory and Fourier analysis) | MR | Zbl

[8] Kolk, Johan A. C.; Varadarajan, V. S. On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.), Volume 7 (1996) no. 1, pp. 67-96 | DOI | MR | Zbl

[9] Littelmann, Peter On spherical double cones, J. Algebra, Volume 166 (1994) no. 1, pp. 142-157 | DOI | MR | Zbl

[10] Loke, Hung Yean Trilinear forms of 𝔤𝔩2, Pacific J. Math., Volume 197 (2001) no. 1, pp. 119-144 | DOI | MR | Zbl

[11] Magyar, Peter; Weyman, Jerzy; Zelevinsky, Andrei Multiple flag varieties of finite type, Adv. Math., Volume 141 (1999) no. 1, pp. 97-118 | DOI | MR | Zbl

[12] Molčanov, V. F. Tensor products of unitary representations of the three-dimensional Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979) no. 4, p. 860-891, 967 | MR | Zbl

[13] Oksak, A. I. Trilinear Lorentz invariant forms, Comm. Math. Phys., Volume 29 (1973), pp. 189-217 | DOI | MR

[14] Sabbah, C. Polynômes de Bernstein-Sato à plusieurs variables, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau, 1987 (Exp. No. XIX, 6) | Numdam | MR | Zbl

[15] Takahashi, Reiji Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France, Volume 91 (1963), pp. 289-433 | Numdam | MR | Zbl

[16] van den Ban, E. P. The principal series for a reductive symmetric space. I. H-fixed distribution vectors, Ann. Sci. École Norm. Sup. (4), Volume 21 (1988) no. 3, pp. 359-412 | Numdam | MR | Zbl

[17] Wallach, Nolan R. Harmonic analysis on homogeneous spaces, Marcel Dekker Inc., New York, 1973 (Pure and Applied Mathematics, No. 19) | MR | Zbl

[18] Warner, Garth Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972 (Die Grundlehren der mathematischen Wissenschaften, Band 188) | MR | Zbl

  • Case, Jeffrey S; Lin, Yueh-Ju; Yuan, Wei Curved Versions of the Ovsienko–Redou Operators, International Mathematics Research Notices, Volume 2023 (2023) no. 19, p. 16904 | DOI:10.1093/imrn/rnad053
  • CLERC, JEAN-LOUIS SINGULAR CONFORMALLY INVARIANT TRILINEAR FORMS, II THE HIGHER MULTIPLICITY CASE, Transformation Groups, Volume 22 (2017) no. 3, p. 651 | DOI:10.1007/s00031-016-9404-7
  • Möllers, Jan; Ørsted, Bent; Oshima, Yoshiki Knapp–Stein type intertwining operators for symmetric pairs, Advances in Mathematics, Volume 294 (2016), p. 256 | DOI:10.1016/j.aim.2016.02.024
  • CLERC, JEAN-LOUIS SINGULAR CONFORMALLY INVARIANT TRILINEAR FORMS, I THE MULTIPLICITY ONE THEOREM, Transformation Groups, Volume 21 (2016) no. 3, p. 619 | DOI:10.1007/s00031-016-9365-x
  • Clare, Pierre Invariant trilinear forms for spherical degenerate principal series of complex symplectic groups, International Journal of Mathematics, Volume 26 (2015) no. 13, p. 1550107 | DOI:10.1142/s0129167x15501074
  • Ben Said, Salem; Koufany, Khalid; Zhang, Genkai Invariant trilinear forms on spherical principal series of real rank one semisimple Lie groups, International Journal of Mathematics, Volume 25 (2014) no. 03, p. 1450017 | DOI:10.1142/s0129167x14500177
  • Beckmann, Ralf; Clerc, Jean-Louis Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, Journal of Functional Analysis, Volume 262 (2012) no. 10, p. 4341 | DOI:10.1016/j.jfa.2012.02.021

Cité par 7 documents. Sources : Crossref