Conformally invariant trilinear forms on the sphere
[Formes trilinéaires conformément invariantes sur la sphère]
Annales de l'Institut Fourier, Tome 61 (2011) no. 5, pp. 1807-1838.

À chaque nombre complexe λ est associée une représentation π λ du groupe conforme SO 0 (1,n) sur 𝒞 (S n-1 ) (série principale sphérique). Pour chaque triplet (λ 1 ,λ 2 ,λ 3 ), nous construisons une forme trilinéaire sur 𝒞 (S n-1 )×𝒞 (S n-1 )×𝒞 (S n-1 ) qui est invariante par π λ 1 π λ 2 π λ 3 . La forme trilinéaire, d’abord définie dans un ouvert de 3 est étendue méromorphiquement, avec des pôles simples en une famille explicite de plans de 3 . Pour les valeurs génériques des paramètres, nous démontrons l’unicité d’une telle forme trilinéaire invariante.

To each complex number λ is associated a representation π λ of the conformal group SO 0 (1,n) on 𝒞 (S n-1 ) (spherical principal series). For three values λ 1 ,λ 2 ,λ 3 , we construct a trilinear form on 𝒞 (S n-1 )×𝒞 (S n-1 )×𝒞 (S n-1 ), which is invariant by π λ 1 π λ 2 π λ 3 . The trilinear form, first defined for (λ 1 ,λ 2 ,λ 3 ) in an open set of 3 is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.

DOI : 10.5802/aif.2659
Classification : 22E45, 43A85
Keywords: Trilinear invariant forms, conformal group, meromorphic continuation
Mot clés : formes trilinéaires invariantes, groupe conforme, prolongement méromorphe

Clerc, Jean-Louis 1 ; Ørsted, Bent 2

1 Université Henri Poincaré (Nancy 1) Institut Élie Cartan 54506 Vandoeuvre-lès-Nancy (France)
2 Matematisk Institut Byg. 430, Ny Munkegade 8000 Aarhus C (Denmark)
@article{AIF_2011__61_5_1807_0,
     author = {Clerc, Jean-Louis and {\O}rsted, Bent},
     title = {Conformally invariant trilinear forms on the sphere},
     journal = {Annales de l'Institut Fourier},
     pages = {1807--1838},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {5},
     year = {2011},
     doi = {10.5802/aif.2659},
     mrnumber = {2961841},
     zbl = {1252.22008},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2659/}
}
TY  - JOUR
AU  - Clerc, Jean-Louis
AU  - Ørsted, Bent
TI  - Conformally invariant trilinear forms on the sphere
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 1807
EP  - 1838
VL  - 61
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2659/
DO  - 10.5802/aif.2659
LA  - en
ID  - AIF_2011__61_5_1807_0
ER  - 
%0 Journal Article
%A Clerc, Jean-Louis
%A Ørsted, Bent
%T Conformally invariant trilinear forms on the sphere
%J Annales de l'Institut Fourier
%D 2011
%P 1807-1838
%V 61
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2659/
%R 10.5802/aif.2659
%G en
%F AIF_2011__61_5_1807_0
Clerc, Jean-Louis; Ørsted, Bent. Conformally invariant trilinear forms on the sphere. Annales de l'Institut Fourier, Tome 61 (2011) no. 5, pp. 1807-1838. doi : 10.5802/aif.2659. https://aif.centre-mersenne.org/articles/10.5802/aif.2659/

[1] Bernstein, Joseph; Reznikov, Andre Estimates of automorphic functions, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 19-37 | MR | Zbl

[2] Bruhat, François Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, Volume 84 (1956), pp. 97-205 | Numdam | MR | Zbl

[3] Clerc, Jean-Louis; Kobayashi, T.; Ørsted, B.; Pevzner, M. Generalized Bernstein- Reznikov integrals (to be published in Mathematische Annalen, DOI 10.1007/ s0028-010-0516-4)

[4] Clerc, Jean-Louis; Neeb, Karl-Hermann Orbits of triples in the Shilov boundary of a bounded symmetric domain, Transform. Groups, Volume 11 (2006) no. 3, pp. 387-426 | DOI | MR | Zbl

[5] Deitmar, Anton Invariant triple products, Int. J. Math. Math. Sci. (2006), pp. 22 (Art. ID 48274) | DOI | MR | Zbl

[6] Gelʼfand, I. M.; Shilov, G. E. Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977] (Properties and operations, Translated from the Russian by Eugene Saletan) | MR | Zbl

[7] Hörmander, Lars The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1983 (Distribution theory and Fourier analysis) | MR | Zbl

[8] Kolk, Johan A. C.; Varadarajan, V. S. On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.), Volume 7 (1996) no. 1, pp. 67-96 | DOI | MR | Zbl

[9] Littelmann, Peter On spherical double cones, J. Algebra, Volume 166 (1994) no. 1, pp. 142-157 | DOI | MR | Zbl

[10] Loke, Hung Yean Trilinear forms of 𝔤𝔩 2 , Pacific J. Math., Volume 197 (2001) no. 1, pp. 119-144 | DOI | MR | Zbl

[11] Magyar, Peter; Weyman, Jerzy; Zelevinsky, Andrei Multiple flag varieties of finite type, Adv. Math., Volume 141 (1999) no. 1, pp. 97-118 | DOI | MR | Zbl

[12] Molčanov, V. F. Tensor products of unitary representations of the three-dimensional Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979) no. 4, p. 860-891, 967 | MR | Zbl

[13] Oksak, A. I. Trilinear Lorentz invariant forms, Comm. Math. Phys., Volume 29 (1973), pp. 189-217 | DOI | MR

[14] Sabbah, C. Polynômes de Bernstein-Sato à plusieurs variables, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau, 1987 (Exp. No. XIX, 6) | Numdam | MR | Zbl

[15] Takahashi, Reiji Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France, Volume 91 (1963), pp. 289-433 | Numdam | MR | Zbl

[16] van den Ban, E. P. The principal series for a reductive symmetric space. I. H-fixed distribution vectors, Ann. Sci. École Norm. Sup. (4), Volume 21 (1988) no. 3, pp. 359-412 | Numdam | MR | Zbl

[17] Wallach, Nolan R. Harmonic analysis on homogeneous spaces, Marcel Dekker Inc., New York, 1973 (Pure and Applied Mathematics, No. 19) | MR | Zbl

[18] Warner, Garth Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972 (Die Grundlehren der mathematischen Wissenschaften, Band 188) | MR | Zbl

Cité par Sources :