We determine the algebra structure of the Hochschild cohomology of the singular cochain algebra with coefficients in a field on a space whose cohomology is a polynomial algebra. A spectral sequence calculation of the Hochschild cohomology is also described. In particular, when the underlying field is of characteristic two, we determine the associated bigraded Batalin-Vilkovisky algebra structure on the Hochschild cohomology of the singular cochain on a space whose cohomology is an exterior algebra.
Nous déterminons la structure d’algèbre sur la cohomologie de Hochschild des cochaînes singulières à coefficients dans un corps d’un espace dont la cohomologie est une algèbre polynômiale. Un calcul de cohomologie de Hochschild à l’aide d’une suite spectrale est aussi décrit. En particulier, quand le corps sous-jacent est de caractéristique deux, nous déterminons la structure d’algèbre de Batalin-Vilkovisky bigraduée associée à la cohomologie de Hochschild des cochaînes singulières d’un espace dont la cohomologie est une algèbre extérieure.
Keywords: Hochschild cohomology, singular cochain algebra, Batalin-Vilkovisky algebra, Koszul-Tate resolution.
Mot clés : Cohomologie de Hochschild, cochaînes singulières, algèbre de Batalin-Vilkovisky, résolution de Koszul-Tate.
Kuribayashi, Katsuhiko 1
@article{AIF_2011__61_5_1779_0, author = {Kuribayashi, Katsuhiko}, title = {The {Hochschild} cohomology ring of the singular cochain algebra of a space}, journal = {Annales de l'Institut Fourier}, pages = {1779--1805}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {5}, year = {2011}, doi = {10.5802/aif.2658}, mrnumber = {2961840}, zbl = {1279.16009}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2658/} }
TY - JOUR AU - Kuribayashi, Katsuhiko TI - The Hochschild cohomology ring of the singular cochain algebra of a space JO - Annales de l'Institut Fourier PY - 2011 SP - 1779 EP - 1805 VL - 61 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2658/ DO - 10.5802/aif.2658 LA - en ID - AIF_2011__61_5_1779_0 ER -
%0 Journal Article %A Kuribayashi, Katsuhiko %T The Hochschild cohomology ring of the singular cochain algebra of a space %J Annales de l'Institut Fourier %D 2011 %P 1779-1805 %V 61 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2658/ %R 10.5802/aif.2658 %G en %F AIF_2011__61_5_1779_0
Kuribayashi, Katsuhiko. The Hochschild cohomology ring of the singular cochain algebra of a space. Annales de l'Institut Fourier, Volume 61 (2011) no. 5, pp. 1779-1805. doi : 10.5802/aif.2658. https://aif.centre-mersenne.org/articles/10.5802/aif.2658/
[1] Homology of perfect complexes, Adv. Math., Volume 223 (2010), pp. 1731-1781 (arXiv: math.AC/0609008v2) | DOI | MR | Zbl
[2] Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Supér, Volume 41 (2008), pp. 573-619 | Numdam | MR | Zbl
[3] Stratifying triangulated categories, preprint, (2009)
[4] Global Hochschild (co-)homology of singular spaces, Advances in Math., Volume 217 (2008), pp. 205-242 | DOI | MR | Zbl
[5] Multiplicative structures for Koszul algebras, preprint (2005) (arXiv.org/abs/math/0508177)
[6] String topology, preprint (1999) (arXiv.org/abs/math/9911159, to appear in Ann. of Math)
[7] Cyclic homology of algebras with one generator, K-theory, Volume 5 (1991), pp. 51-69 | DOI | MR | Zbl
[8] Multiplicative properties of Atiyah duality, Homology Homotopy Appl., Volume 6 (2004), pp. 269-281 | MR | Zbl
[9] A homotopy theoretic realization of string topology, Math. Ann., Volume 324 (2001), pp. 773-798 | DOI | MR | Zbl
[10] Gorenstein spaces, Adv. in Math., Volume 71 (1988), pp. 92-112 | DOI | MR | Zbl
[11] Adams’ cobar equivalence, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 531-549 | DOI | MR | Zbl
[12] Differential graded algebras in topology, I.M. James (Ed.) (Handbook of Algebraic Topology), Elsevier, Amsterdam, 1995, pp. 829-865 | MR | Zbl
[13] Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer-Verlag, 2011 | MR | Zbl
[14] Gerstenhaber duality in Hochschild cohomology, J. Pure Appl. Algebra, Volume 199 (2005), pp. 43-59 | DOI | MR | Zbl
[15] Rational BV-algebra in string topology, Bull. Soc. Math. France, Volume 136 (2008), pp. 311-327 | Numdam | MR | Zbl
[16] String topology on Gorenstein spaces, Math. Ann., Volume 345 (2009), pp. 417-452 | DOI | MR | Zbl
[17] The Hochschild cohomology of a closed manifold, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 235-252 | Numdam | MR | Zbl
[18] Rational string topology, J. Eur. Math. Soc. (JEMS), Volume 9 (2007), pp. 123-156 | MR | Zbl
[19] -algebras and the cyclic bar complex, J. Eur. Math. Soc. (JEMS), Volume 34 (1990), pp. 256-283 | MR | Zbl
[20] Notions of category in differential algebra, Algebraic Topology: Rational Homotopy (Springer Lecture Notes in Math.), Volume 1318, Springer, Berlin, New York, 1988, pp. 138-154 | MR | Zbl
[21] Hochschild (co)homology of exterior algebras, Comm. Algebra, Volume 35 (2007), pp. 115-131 | MR | Zbl
[22] Hochschild cohomology rings of algebras , Beiträge Algebra Geom., Volume 41 (2000), pp. 291-301 | MR | Zbl
[23] Cyclic homology and equivariant homology, Invent. Math., Volume 87 (1987), pp. 403-423 | DOI | MR | Zbl
[24] Auslander-Reiten theory over topological spaces, Comment. Math. Helv., Volume 79 (2004), pp. 160-182 | DOI | MR | Zbl
[25] The Auslander-Reiten quiver of a Poincaré duality space, Algebr. Represent. Theory, Volume 9 (2006), pp. 323-336 | DOI | MR | Zbl
[26] A proof of a cyclic version of Deligne’s conjecture via cacti, Math. Res. Lett., Volume 15 (2008), pp. 901-921 | MR | Zbl
[27] Moduli space actions on the Hochschild co-chains of a Frobenius algebra. II. Correlators, J. Noncommut. Geom., Volume 2 (2008), pp. 283-332 | DOI | MR | Zbl
[28] Differentials in the Eilenberg-Moore spectral sequence, J. Pure Appl. Algebra, Volume 2 (1972), pp. 131-148 | DOI | MR | Zbl
[29] On the mod cohomology of the spaces of free loops on the Grassmann and Stiefel manifolds, J. Math. Soc. Japan, Volume 43 (1991), pp. 331-346 | DOI | MR | Zbl
[30] On the levels of spaces and topological realization of objects in a triangulated category, preprint (2010)
[31] Upper and lower bounds of the (co)chain type level of a space, preprint (2010) (arXiv: math.AT/1006.2669)
[32] On the graded centers and block cohomology, Proc. Edinburgh Math. Soc, Volume 52 (2009), pp. 489-514 | DOI | MR | Zbl
[33] Batalin-Vilkovisky algebra structures on Hochschild cohomology, Bull. Soc. Math. France, Volume 137 (2009), pp. 277-295 | Numdam | MR | Zbl
[34] String topology for spheres, With an appendix by Gerald Gaudens and Menichi, Comment. Math. Helv., Volume 84 (2009), pp. 135-157 | MR | Zbl
[35] De Rham model for string topology, Int. Math. Res. Not. (2004) no. 55, pp. 2955-2981 | DOI | MR | Zbl
[36] Topology of Lie groups I, Translations of Mathematical Monographs, 91, American Mathematical Society, Providence, RI, 1991 | MR | Zbl
[37] The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps, J. Pure Appl. Algebra, Volume 5 (1974), pp. 1-50 | DOI | MR | Zbl
[38] Dimensions of triangulated categories, J. K-Theory, Volume 1 (2008), pp. 193-256 | DOI | MR | Zbl
[39] On the Hochschild cohomology of crossed products, Comm. Algebra, Volume 21 (1993), pp. 2727-2748 | DOI | MR | Zbl
[40] Families of Auslander-Reiten components for simply connected differential graded algebras, Math. Z., Volume 426 (2010), pp. 43-62 | DOI | MR
[41] The Hochschild cohomology ring of a group algebra, Proc. London Math. Soc. (3), Volume 79 (1999), pp. 131-157 | DOI | MR | Zbl
[42] On the characteristic zero cohomology of the free loop space, Amer. J. Math., Volume 103 (1981), pp. 887-910 | DOI | MR | Zbl
[43] The Eilenberg-Moore spectral sequence and mod cohomology of certain free loop spaces, Illinois J. Math., Volume 28 (1984), pp. 516-522 | MR | Zbl
[44] Support varieties and Hochschild cohomology ring, Proc. London Math. Soc. (3), Volume 88 (2004), pp. 705-732 | DOI | MR | Zbl
[45] Infinity structure of Poincaré duality spaces, Appendix A by Dennis Sullivan, Algebr. Geom. Topol., Volume 7 (2007), pp. 233-260 | MR | Zbl
[46] The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier, Volume 58 (2008), pp. 2351-2379 | DOI | Numdam | MR | Zbl
[47] A Batalin-Vilkovisky algebra suructure on the Hochschild cohomology of truncated polynomials, preprint, (2007)
Cited by Sources: