Soit une surface immergée dans avec une courbure moyenne constante. Nous considérons l’opérateur de Weingarten à trace nulle associé à la seconde forme fondamentale de la surface et nous introduisons un tenseur , liés à la forme quadratique de Abresch-Rosenberg. Nous établissons les équations de type Simons pour et . En utilisant ces équations, nous caractérisons les immersions pour lesquelles ou sont bornés.
Let be an immersed surface in with constant mean curvature. We consider the traceless Weingarten operator associated to the second fundamental form of the surface, and we introduce a tensor , related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both and . By using these equations, we characterize some immersions for which or is appropriately bounded.
Keywords: Surface with constant mean curvature, Simons type equation, Codazzi’s equation
Mot clés : surface à courbure moyenne constante, équation type Simons, équation de Codazzi
Batista da Silva, Márcio Henrique 1
@article{AIF_2011__61_4_1299_0, author = {Batista da Silva, M\'arcio Henrique}, title = {Simons {Type} {Equation} in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and {Applications}}, journal = {Annales de l'Institut Fourier}, pages = {1299--1322}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2641}, mrnumber = {2951494}, zbl = {1242.53066}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2641/} }
TY - JOUR AU - Batista da Silva, Márcio Henrique TI - Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications JO - Annales de l'Institut Fourier PY - 2011 SP - 1299 EP - 1322 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2641/ DO - 10.5802/aif.2641 LA - en ID - AIF_2011__61_4_1299_0 ER -
%0 Journal Article %A Batista da Silva, Márcio Henrique %T Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications %J Annales de l'Institut Fourier %D 2011 %P 1299-1322 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2641/ %R 10.5802/aif.2641 %G en %F AIF_2011__61_4_1299_0
Batista da Silva, Márcio Henrique. Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications. Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1299-1322. doi : 10.5802/aif.2641. https://aif.centre-mersenne.org/articles/10.5802/aif.2641/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Volume 193 (2004), pp. 141-174 | DOI | MR | Zbl
[2] Hypersurfaces with constant mean curvature in Spheres, Proc. of the AMS, Volume 120 (1994), pp. 1223-1229 | DOI | MR | Zbl
[3] Simons Equation Revisited, Anais Acad. Brasil. Ciências, Volume 66 (1994), pp. 397-403 | Zbl
[4] Eigenfunctions and Nodal Sets, Commentarii Math. Helv., Volume 51 (1976), pp. 43-55 | DOI | MR | Zbl
[5] Isometric immersions into 3-dimensional homogeneous manifolds, Commentarii Math. Helv., Volume 82 (2007) no. 1, pp. 87-131 | DOI | MR | Zbl
[6] On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math, Volume 98 (1989), pp. 39-58 | DOI | MR | Zbl
[7] Isoperimetric domains in the Riemannian product of a cicle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J., Volume 48 (1999), pp. 1357-1394 | DOI | MR | Zbl
[8] Minimal varieties in Riemannian manifolds, Indiana Univ. Math. J., Volume 88 (1968), pp. 62-105 | MR | Zbl
[9] Totally umbilic surfaces in homogeneous 3-manifolds (To appear in Comment. Math. Helv.) | Zbl
[10] Harmonic functions on complete Riemannian manifolds, Comm.Pure and Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | MR | Zbl
Cité par Sources :