We show that a bi-invariant metric on a compact connected Lie group is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric on there is a positive integer such that, within a neighborhood of in the class of left-invariant metrics of at most the same volume, is uniquely determined by the first distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where is simple, can be chosen to be two.
Soit un groupe de Lie compact et connexe, et soit une métrique bi-invariante sur . On démontre que est isolée spectralement dans la classe des métriques invariantes à gauche : plus précisément, il existe un entier positif tel que, dans un voisinage de dans la classe des métriques invariantes à gauche et de volume inférieur ou égal à celui de , la métrique est determinée de manière unique par les premières valeurs propres strictement positives de son Laplacien (sans multiplicités). Si est simple, on peut choisir .
Keywords: Laplacian, eigenvalue spectrum, Lie group, left-invariant metric, bi-invariant metric
Mots-clés : opérateur de Laplace, spectre des valeurs propres, groupe de Lie, métrique invariante à gauche, métrique bi-invariante
Gordon, Carolyn S. 1; Schueth, Dorothee 2; Sutton, Craig J. 1
@article{AIF_2010__60_5_1617_0, author = {Gordon, Carolyn S. and Schueth, Dorothee and Sutton, Craig J.}, title = {Spectral isolation of bi-invariant metrics on compact {Lie} groups}, journal = {Annales de l'Institut Fourier}, pages = {1617--1628}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {5}, year = {2010}, doi = {10.5802/aif.2567}, mrnumber = {2766225}, zbl = {1203.53035}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2567/} }
TY - JOUR AU - Gordon, Carolyn S. AU - Schueth, Dorothee AU - Sutton, Craig J. TI - Spectral isolation of bi-invariant metrics on compact Lie groups JO - Annales de l'Institut Fourier PY - 2010 SP - 1617 EP - 1628 VL - 60 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2567/ DO - 10.5802/aif.2567 LA - en ID - AIF_2010__60_5_1617_0 ER -
%0 Journal Article %A Gordon, Carolyn S. %A Schueth, Dorothee %A Sutton, Craig J. %T Spectral isolation of bi-invariant metrics on compact Lie groups %J Annales de l'Institut Fourier %D 2010 %P 1617-1628 %V 60 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2567/ %R 10.5802/aif.2567 %G en %F AIF_2010__60_5_1617_0
Gordon, Carolyn S.; Schueth, Dorothee; Sutton, Craig J. Spectral isolation of bi-invariant metrics on compact Lie groups. Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1617-1628. doi : 10.5802/aif.2567. https://aif.centre-mersenne.org/articles/10.5802/aif.2567/
[1] Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992) no. 4, pp. 93-96 | DOI | MR | Zbl
[2] Isospectral deformations of metrics on spheres, Invent. Math., Volume 145 (2001) no. 2, pp. 317-331 | DOI | MR | Zbl
[3] Spectral isolation of naturally reductive metrics on simple Lie groups (Math. Z., to appear)
[4] On the characterization of flat metrics by the spectrum, Comment. Math. Helv., Volume 55 (1980) no. 3, pp. 427-444 | DOI | MR | Zbl
[5] Length and eigenvalue equivalence, Int. Math. Res. Not. IMRN (2007) no. 24, pp. 24 (Art. ID rnm135, 24 pp.) | MR | Zbl
[6] Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math., Volume 25 (1972), pp. 225-246 | DOI | MR
[7] Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A., Volume 51 (1964), pp. 542 | DOI | MR | Zbl
[8] Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc., Volume 34 (1970) no. 3-4, p. 269-285 (1971) | MR | Zbl
[9] Isospectral metrics and potentials on classical compact simple Lie groups, Michigan Math. J., Volume 53 (2005) no. 2, pp. 305-318 | DOI | MR | Zbl
[10] Isospectral manifolds with different local geometries, J. Reine Angew. Math., Volume 534 (2001), pp. 41-94 | DOI | MR | Zbl
[11] Isospectral metrics on five-dimensional spheres, J. Differential Geom., Volume 58 (2001) no. 1, pp. 87-111 | MR | Zbl
[12] Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal., Volume 9 (1999) no. 1, pp. 185-214 | DOI | MR | Zbl
[13] Eigenvalues of the Laplacian of Riemannian manifolds, Tǒhoku Math. J. (2), Volume 25 (1973), pp. 391-403 | DOI | MR | Zbl
[14] A characterization of the canonical spheres by the spectrum, Math. Z., Volume 175 (1980) no. 3, pp. 267-274 | DOI | EuDML | MR | Zbl
[15] On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, Volume 31 (1979) no. 1, pp. 209-226 | DOI | MR | Zbl
[16] The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc., Volume 244 (1978), pp. 313-321 | DOI | MR | Zbl
Cited by Sources: