Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension .
En travaillant sur l’équation de Calabi-Yau généralisée proposée par Gromov pour des variétés presque-Kalhériennes fermées, nous étendons le résultat de la non-existence prouvé en dimension complexe 2, à des dimensions arbitraires.
Keywords: Calabi-Yau equation, symplectic form, almost complex structure, Hermitian metric, Nijenhuis tensor, pseudo holomorphic function
Mot clés : équation de Calabi-Yau, forme symplectique, structur presque complexe, métrique Hermitienne, tenseur de Nijenhuis, fonction speudo holomorphe
Wang, Hongyu 1; Zhu, Peng 2
@article{AIF_2010__60_5_1595_0, author = {Wang, Hongyu and Zhu, Peng}, title = {On a generalized {Calabi-Yau} equation}, journal = {Annales de l'Institut Fourier}, pages = {1595--1615}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {5}, year = {2010}, doi = {10.5802/aif.2566}, mrnumber = {2766224}, zbl = {1228.53090}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2566/} }
TY - JOUR AU - Wang, Hongyu AU - Zhu, Peng TI - On a generalized Calabi-Yau equation JO - Annales de l'Institut Fourier PY - 2010 SP - 1595 EP - 1615 VL - 60 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2566/ DO - 10.5802/aif.2566 LA - en ID - AIF_2010__60_5_1595_0 ER -
%0 Journal Article %A Wang, Hongyu %A Zhu, Peng %T On a generalized Calabi-Yau equation %J Annales de l'Institut Fourier %D 2010 %P 1595-1615 %V 60 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2566/ %R 10.5802/aif.2566 %G en %F AIF_2010__60_5_1595_0
Wang, Hongyu; Zhu, Peng. On a generalized Calabi-Yau equation. Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1595-1615. doi : 10.5802/aif.2566. https://aif.centre-mersenne.org/articles/10.5802/aif.2566/
[1] Symplectic and almost complex manifolds, Progress in Math., 117 (1994), pp. 41-76 | MR
[2] The space of Kähler metrics, 2 (1954), pp. 206-207
[3] Sur l’analogue presque-complexe de l’équation de Calabi-Yau, Osaka J. Math., Volume 33 (1996), pp. 829-846 | MR | Zbl
[4] Two forms on four manifolds and elliptic equations, in Inspired by S. S. Chern (2006), pp. 153-172 (in A memorial volume in honor of a great mathematician, Ed. by P. A. Griffiths) | MR | Zbl
[5] Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, Volume 232 (1951), pp. 1281-1283 | MR | Zbl
[6] Hermitian connections and Dirac operators, Bull. Un. Mat. Ital., Volume B 11 (no. 2, suppl.) (1997), pp. 257-288 | MR | Zbl
[7] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347 | DOI | MR | Zbl
[8] Introduction to symplectic topology, Oxford University Press, 1998 | MR | Zbl
[9] On the volume elements of a manifold, Trans. AMS, Volume 120 (1965), pp. 286-294 | DOI | MR | Zbl
[10] Taming symplectic forms and the Calabi-Yau equation, Proc. London Math. Soc., Volume 97 (2008), pp. 401-424 | DOI | MR | Zbl
[11] Calabi-Yau equation on closed symplectic 4-manifolds (in preparation)
[12] The Calabi-Yau equation on almost Kähler four manifolds, J. Diff. Geom., Volume 76 (2007), pp. 317-349 | MR | Zbl
[13] The Classical groups, Princeton Mathematical Series, 1, Princeton University Press, 1973 | MR | Zbl
[14] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | MR | Zbl
[15] On almost Hermitian manifolds, Yangzhou University (2008) (Ph. D. Thesis) | Zbl
Cited by Sources: