We implement a singularity theory approach, the path formulation, to classify -equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a -miniversal unfolding of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of onto its unfolding parameter space. We apply our results to degenerate bifurcation of period- subharmonics in reversible systems, in particular in the 1:1-resonance.
Nous utilisons une approche de la thĂ©orie des singularitĂ©s pour classifier des problĂšmes de bifurcation -Ă©quivariants de corang 2, avec un ou deux paramĂštres de bifurcation distinguĂ©s, et leurs perturbations. Les diagrammes de bifurcation sont identifiĂ©s avec des sections sur des chemins dans lâespace des paramĂštres dâun dĂ©ployement miniversel -Ă©quivariant de leur noyau. Les Ă©quivalences entre les chemins sont donnĂ©es par des diffĂ©omorphismes qui se relĂšvent le long de la projection de lâensemble des zĂ©ros de dans lâespace de ses paramĂštres. Nos rĂ©sultats sont appliquĂ©s aux bifurcations dĂ©gĂ©nĂ©rĂ©es de solutions sous-harmoniques de pĂ©riode 3 dans des systĂšmes dynamiques rĂ©versibles, en particulier dans la rĂ©sonance 1 :1.
Keywords: Equivariant bifurcation, degenerate bifurcation, path formulation, singularity theory, 1:1-resonance, reversible systems, subharmonic bifurcation
Mot clés : bifurcation équivariante, bifurcation dégénérée, formulation des chemins, théorie des singularités, résonance 1 :1, systÚmes dynamiques réversibles, bifurcation sous-harmonique
Furter, Jacques-Ălie 1; Sitta, Angela Maria 2
@article{AIF_2010__60_4_1363_0, author = {Furter, Jacques-\'Elie and Sitta, Angela Maria}, title = {Path formulation for multiparameter $\mathbb{D}_3$-equivariant bifurcation problems}, journal = {Annales de l'Institut Fourier}, pages = {1363--1400}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {4}, year = {2010}, doi = {10.5802/aif.2558}, mrnumber = {2722245}, zbl = {1204.37054}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2558/} }
TY - JOUR AU - Furter, Jacques-Ălie AU - Sitta, Angela Maria TI - Path formulation for multiparameter $\mathbb{D}_3$-equivariant bifurcation problems JO - Annales de l'Institut Fourier PY - 2010 SP - 1363 EP - 1400 VL - 60 IS - 4 PB - Association des Annales de lâinstitut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2558/ DO - 10.5802/aif.2558 LA - en ID - AIF_2010__60_4_1363_0 ER -
%0 Journal Article %A Furter, Jacques-Ălie %A Sitta, Angela Maria %T Path formulation for multiparameter $\mathbb{D}_3$-equivariant bifurcation problems %J Annales de l'Institut Fourier %D 2010 %P 1363-1400 %V 60 %N 4 %I Association des Annales de lâinstitut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2558/ %R 10.5802/aif.2558 %G en %F AIF_2010__60_4_1363_0
Furter, Jacques-Ălie; Sitta, Angela Maria. Path formulation for multiparameter $\mathbb{D}_3$-equivariant bifurcation problems. Annales de l'Institut Fourier, Volume 60 (2010) no. 4, pp. 1363-1400. doi : 10.5802/aif.2558. https://aif.centre-mersenne.org/articles/10.5802/aif.2558/
[1] Wavefront evolution and equivariant Morse lemma, Comm. Pure. App. Math., Volume 29 (1976), pp. 557-582 | DOI | MR | Zbl
[2] Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions, Math. Proc. Camb. Phil. Soc., Volume 94 (1983), pp. 315-339 | DOI | MR | Zbl
[3] Singularity theory and equivariant symplectic maps, Lecture Notes in Mathematics, 1558, Springer-Verlag, Berlin, 1993 | MR | Zbl
[4] Functions on discriminants, J. London Math. Soc. (2), Volume 30 (1984) no. 3, pp. 551-567 | DOI | MR | Zbl
[5] Determinacy and unipotency, Invent. Math., Volume 88 (1987) no. 3, pp. 521-554 | DOI | MR | Zbl
[6] Post-buckling behavior of a nonlinearly hyperelastic thin rod with cross-section invariant under the dihedral group , Arch. Rational Mech. Anal., Volume 89 (1985) no. 4, pp. 307-388 | DOI | MR | Zbl
[7] Generalized Lyapunov-Schmidt reduction method and normal forms for the study of bifurcations of periodic points in families of reversible diffeomorphisms, J. Difference Equ. Appl., Volume 10 (2004) no. 7, pp. 621-649 | DOI | MR | Zbl
[8] Subharmonic branching at a reversible resonance, J. Difference Equ. Appl., Volume 11 (2005) no. 13, pp. 1119-1135 | DOI | MR | Zbl
[9] Path formulation for -equivariant bifurcation problems, Real and complex singularities (Trends Math.), BirkhÀuser, Basel, 2007, pp. 127-141 | MR | Zbl
[10] The unfolding and determinacy theorems for subgroups of and , Mem. Amer. Math. Soc., Volume 50 (1984) no. 306, pp. x+88 | MR | Zbl
[11] Deformations of sections of singularities and Gorenstein surface singularities, Amer. J. Math., Volume 109 (1987) no. 4, pp. 695-721 | DOI | MR | Zbl
[12] On the legacy of free divisors: discriminants and Morse-type singularities, Amer. J. Math., Volume 120 (1998) no. 3, pp. 453-492 | DOI | MR | Zbl
[13] Secondary bifurcations in systems with all-to-all coupling. II, Dyn. Syst., Volume 21 (2006) no. 4, pp. 439-463 | MR | Zbl
[14] Geometric path formulation for bifurcation problems, J. Natur. Geom., Volume 12 (1997) no. 1, pp. xii+100 | MR | Zbl
[15] Algebraic path formulation for equivariant bifurcation problems, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 124 (1998) no. 2, pp. 275-304 www.scopus.com Cited By (since 1996): 2 | DOI | MR | Zbl
[16] New methods in the classification theory of bifurcation problems, Multiparameter bifurcation theory (Arcata, Calif., 1985) (Contemp. Math.), Volume 56, Amer. Math. Soc., Providence, RI, 1986, pp. 97-116 | MR | Zbl
[17] Computer algebra methods for equivariant dynamical systems, Lecture Notes in Mathematics, 1728, Springer-Verlag, Berlin, 2000 | MR | Zbl
[18] Automatic classification of normal forms, Nonlinear Anal., Volume 34 (1998) no. 2, pp. 157-190 | DOI | MR | Zbl
[19] Bifurcations of subharmonic solutions in reversible systems, J. Differential Equations, Volume 75 (1988) no. 1, pp. 28-42 | DOI | MR | Zbl
[20] A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., Volume 32 (1979) no. 1, pp. 21-98 | DOI | MR | Zbl
[21] Bifurcation and planar pattern formation for a liquid crystal, Bifurcation, symmetry and patterns (Porto, 2000) (Trends Math.), BirkhÀuser, Basel, 2003, pp. 55-66 | MR | Zbl
[22] A classification of degenerate Hopf bifurcations with symmetry, J. Differential Equations, Volume 69 (1987) no. 2, pp. 216-264 | DOI | MR | Zbl
[23] Bifurcations with symmetry including applications to the BĂ©nard problem, Comm. Pure Appl. Math., Volume 35 (1982) no. 1, pp. 81-111 | DOI | MR | Zbl
[24] Singularities and groups in bifurcation theory. Vol. II, Applied Mathematical Sciences, 69, Springer-Verlag, New York, 1988 | MR | Zbl
[25] Equivariant multiparameter bifurcation via singularity theory, J. Dynam. Differential Equations, Volume 5 (1993) no. 2, pp. 189-218 | DOI | MR | Zbl
[26] Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, 77, Cambridge University Press, Cambridge, 1984 | MR | Zbl
[27] DĂ©ploiements versels des applications diffĂ©rentiables et classification des applications stables, SingularitĂ©s dâapplications diffĂ©rentiables (SĂ©m., Plans-sur-Bex, 1975), Springer, Berlin, 1976, p. 1-44. Lecture Notes in Math., Vol. 535 | MR | Zbl
[28] Stability of mappings. III. Finitely determined mapgerms, Inst. Hautes Ătudes Sci. Publ. Math. (1968) no. 35, pp. 279-308 | Numdam | MR | Zbl
[29] Ciclos Evanescentes para las applicaciones AnalĂticas (1990) (Lecture Notes)
[30] Deformations of maps on complete intersections, Damonâs -equivalence and bifurcations, Singularities (Lille, 1991) (London Math. Soc. Lecture Note Ser.), Volume 201, Cambridge Univ. Press, Cambridge, 1994, pp. 263-284 | MR | Zbl
[31] The path formulation of bifurcation theory, Dynamics, bifurcation and symmetry (CargĂšse, 1993) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 437, Kluwer Acad. Publ., Dordrecht, 1994, pp. 259-278 | MR | Zbl
[32] Versal topological stratification and the bifurcation geometry of map-germs of the plane, Math. Proc. Cambridge Philos. Soc., Volume 107 (1990) no. 1, pp. 127-147 | DOI | MR | Zbl
[33] -unimodal map-germs into the plane, Hokkaido Math. J., Volume 33 (2004) no. 1, pp. 47-64 | MR | Zbl
[34] Classification of -simple germs from to , Compositio Math., Volume 79 (1991) no. 1, pp. 99-108 | Numdam | MR | Zbl
[35] Characterisations of finitely determined equivariant map germs, Math. Ann., Volume 275 (1986) no. 4, pp. 583-597 | DOI | MR | Zbl
[36] A note on coherent -sheaves, Math. Ann., Volume 275 (1986) no. 4, pp. 573-582 | DOI | MR | Zbl
[37] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl
[38] The hunting of invariants in the geometry of the discriminant, Real and Complex Singularities, Oslo 1976 (1977), pp. 565-677 | MR | Zbl
[39] Bifurcation of subharmonic solutions in time-reversible systems, Z. Angew. Math. Phys., Volume 37 (1986) no. 4, pp. 455-478 | DOI | MR | Zbl
[40] Subharmonic branching in reversible systems, SIAM J.Math.Anal., Volume 21 (1990), pp. 954-979 www.scopus.com | DOI | MR | Zbl
Cited by Sources: