Galois actions on Néron models of Jacobians
Annales de l'Institut Fourier, Volume 60 (2010) no. 3, pp. 853-903.

Let X be a smooth curve defined over the fraction field K of a complete discrete valuation ring R. We study a natural filtration of the special fiber of the Néron model of the Jacobian of X by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for X over R, and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps occur. We also compute the jumps for each of the finitely many possible fiber types for curves of genus 1 and 2.

Soit X une courbe lisse définie sur le corps des fractions K d’un anneau de valuation discrète R. Nous étudions une filtration naturelle sur la fibre spéciale du modèle de Néron de la Jacobienne de X par des sous-schémas en groupes fermés unipotents. Nous démontrons que les sauts de cette filtration ne dépendent que du type de la fibre spéciale du modèle minimal régulier à croisements normaux stricts de X sur R. En particulier, les sauts sont indépendants de la caractéristique résiduelle. Ensuite, nous obtenons des informations plus précises sur les sauts, et nous les calculons pour chaque type de fibre possible pour les courbes de genre 1 et 2.

DOI: 10.5802/aif.2541
Classification: 14D06
Keywords: Models of curves, tame cyclic quotient singularities, group actions on cohomology, Néron models
Mot clés : modèles des courbes, modèles de Néron, singularitś quotient cycliques modérées, actions de groupe sur la cohomologie

Halle, Lars H. 1

1 Gottfried Wilhelm Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Deutschland)
@article{AIF_2010__60_3_853_0,
     author = {Halle, Lars H.},
     title = {Galois actions on {N\'eron} models of {Jacobians}},
     journal = {Annales de l'Institut Fourier},
     pages = {853--903},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {3},
     year = {2010},
     doi = {10.5802/aif.2541},
     mrnumber = {2680818},
     zbl = {1206.14023},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2541/}
}
TY  - JOUR
AU  - Halle, Lars H.
TI  - Galois actions on Néron models of Jacobians
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 853
EP  - 903
VL  - 60
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2541/
DO  - 10.5802/aif.2541
LA  - en
ID  - AIF_2010__60_3_853_0
ER  - 
%0 Journal Article
%A Halle, Lars H.
%T Galois actions on Néron models of Jacobians
%J Annales de l'Institut Fourier
%D 2010
%P 853-903
%V 60
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2541/
%R 10.5802/aif.2541
%G en
%F AIF_2010__60_3_853_0
Halle, Lars H. Galois actions on Néron models of Jacobians. Annales de l'Institut Fourier, Volume 60 (2010) no. 3, pp. 853-903. doi : 10.5802/aif.2541. https://aif.centre-mersenne.org/articles/10.5802/aif.2541/

[1] Artin, M.; Winters, G. Degenerate fibres and stable reduction of curves, Topology, Volume 10 (1971), pp. 373-383 | DOI | MR | Zbl

[2] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21, Springer-Verlag, Berlin, 1990 | MR | Zbl

[3] Chai, Ching-Li Néron models for semiabelian varieties: congruence and change of base field, Asian J. Math., Volume 4 (2000) no. 4, pp. 715-736 (Loo-Keng Hua: a great mathematician of the twentieth century) | MR | Zbl

[4] Conrad, Brian; Edixhoven, Bas; Stein, William J 1 (p) has connected fibers, Doc. Math., Volume 8 (2003), p. 331-408 (electronic) | MR | Zbl

[5] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 75-109 | DOI | Numdam | MR | Zbl

[6] Deschamps, Mireille Réduction semi-stable, in Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Astérisque, 86, Société Mathématique de France, Paris, 1981 | MR | Zbl

[7] Donovan, Peter The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France, Volume 97 (1969), pp. 257-273 | Numdam | MR | Zbl

[8] Edixhoven, Bas Néron models and tame ramification, Compositio Math., Volume 81 (1992) no. 3, pp. 291-306 | Numdam | MR | Zbl

[9] Grothendieck, Alexander Cohomologie l-adique et fonctions L, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin, 1977 Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), édité par Luc Illusie | MR

[10] Halle, Lars Halvard Stable reduction of curves and tame ramification, KTH, Stockholm (2007) (Ph. D. Thesis)

[11] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl

[12] Köck, Bernhard The Grothendieck-Riemann-Roch theorem for group scheme actions, Ann. Sci. École Norm. Sup. (4), Volume 31 (1998) no. 3, pp. 415-458 | Numdam | MR | Zbl

[13] Kodaira, K. On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; ibid., Volume 78 (1963), pp. 1-40 | MR | Zbl

[14] Lipman, Joseph Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 195-279 | DOI | Numdam | MR | Zbl

[15] Liu, Qing Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, 2002 | MR | Zbl

[16] Namikawa, Yukihiko; Ueno, Kenji The complete classification of fibres in pencils of curves of genus two, Manuscripta Math., Volume 9 (1973), pp. 143-186 | DOI | MR | Zbl

[17] Ogg, A. P. On pencils of curves of genus two, Topology, Volume 5 (1966), pp. 355-362 | DOI | MR | Zbl

[18] Serre, Jean-Pierre Linear representations of finite groups, Springer-Verlag, New York, 1977 (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR

[19] Serre, Jean-Pierre Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York, 1979 | MR | Zbl

[20] Winters, Gayn B. On the existence of certain families of curves, Amer. J. Math., Volume 96 (1974), pp. 215-228 | DOI | MR | Zbl

Cited by Sources: