We consider representations of the fundamental group of the four punctured sphere into . The moduli space of representations modulo conjugacy is the character variety. The Mapping Class Group of the punctured sphere acts on this space by symplectic polynomial automorphisms. This dynamical system can be interpreted as the monodromy of the Painlevé VI equation. Infinite bounded orbits are characterized: they come from -representations. We prove the absence of invariant affine structure (and invariant foliation) for this dynamical system except for special explicit parameters. Following results of Casale, this implies that Malgrange’s groupoid of the Painlevé VI foliation coincides with the symplectic one. This provides a new proof of the transcendence of Painlevé solutions.
Nous étudions l’action du groupe modulaire sur l’espace des représentations du groupe fondamental de la sphère privée de quatre points dans . Ce système dynamique peut être interprété comme la monodromie de l’équation de Painlevé VI. Nous caractérisons les orbites infinies bornées : elles proviennent des représentations dans . Nous démontrons l’absence de struture affine invariante (excepté pour des paramètres spéciaux) puis déduisons, en nous appuyant sur des travaux de Casale, que le groupoïde de Malgrange associé est le groupoïde symplectique. Ceci permet de donner une preuve de l’irréductibilité de l’équation de Painlevé VI, c’est-à-dire de la forte transcendance de ses solutions, par une approche galoisienne, dans l’esprit de la tentative de Drach et Painlevé.
Keywords: Painlevé equations, holomorphic foliations, character varieties, geometric structures
Mot clés : équations de Painlevé, feuilletages holomorphes, variétés des caractères, structures géométriques
Cantat, Serge 1; Loray, Frank 1
@article{AIF_2009__59_7_2927_0, author = {Cantat, Serge and Loray, Frank}, title = {Dynamics on {Character} {Varieties} and {Malgrange} irreducibility of {Painlev\'e} {VI} equation}, journal = {Annales de l'Institut Fourier}, pages = {2927--2978}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2512}, mrnumber = {2649343}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2512/} }
TY - JOUR AU - Cantat, Serge AU - Loray, Frank TI - Dynamics on Character Varieties and Malgrange irreducibility of Painlevé VI equation JO - Annales de l'Institut Fourier PY - 2009 SP - 2927 EP - 2978 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2512/ DO - 10.5802/aif.2512 LA - en ID - AIF_2009__59_7_2927_0 ER -
%0 Journal Article %A Cantat, Serge %A Loray, Frank %T Dynamics on Character Varieties and Malgrange irreducibility of Painlevé VI equation %J Annales de l'Institut Fourier %D 2009 %P 2927-2978 %V 59 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2512/ %R 10.5802/aif.2512 %G en %F AIF_2009__59_7_2927_0
Cantat, Serge; Loray, Frank. Dynamics on Character Varieties and Malgrange irreducibility of Painlevé VI equation. Annales de l'Institut Fourier, Volume 59 (2009) no. 7, pp. 2927-2978. doi : 10.5802/aif.2512. https://aif.centre-mersenne.org/articles/10.5802/aif.2512/
[1] An elementary account of Selberg’s lemma, Enseign. Math. (2), Volume 33 (1987) no. 3-4, pp. 269-273 | MR | Zbl
[2] The topology of the relative character varieties of a quadruply-punctured sphere, Experiment. Math., Volume 8 (1999) no. 1, pp. 85-103 | MR | Zbl
[3] Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J., 1974 (Annals of Mathematics Studies, No. 82) | MR | Zbl
[4] Towards a nonlinear Schwarz’s list, arXiv:0707.3375v1 [math.CA] (2007), pp. 1-28 | MR
[5] On the classification of cubic surfaces, J. London Math. Soc. (2), Volume 19 (1979) no. 2, pp. 245-256 | DOI | MR | Zbl
[6] Bers and Hénon, Painlevé and Schrödinger, Duke Math. J. (to appear), pp. 1-41 | MR
[7] Holomorphic dynamics, Painlevé VI equation and character varieties, arXiv:0711.1579v2 [math.DS] (2007), pp. 1-69
[8] The Galois groupoid of Picard-Painlevé VI equation, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies (RIMS Kôkyûroku Bessatsu, B2), Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, pp. 15-20 | MR
[9] Le groupoïde de Galois de et son irréductibilité, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 471-519 | DOI | MR | Zbl
[10] Une preuve Galoisienne de l’irréductibilité au sens de Nishioka-Umemura de la première équation de Painlevé, Astérisque (2008) no. 157, pp. 83-100 (Équations différentielles et singularités, en l’honneur de J. M. Aroca)
[11] Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math., Volume 141 (2000) no. 1, pp. 55-147 | DOI | MR | Zbl
[12] Cubic surfaces of Markov type, Mat. Sb. (N.S.), Volume 93(135) (1974), p. 331-346, 487 | MR | Zbl
[13] Ergodic theory on moduli spaces, Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 475-507 | DOI | MR | Zbl
[14] The modular group action on real -characters of a one-holed torus, Geom. Topol., Volume 7 (2003), p. 443-486 (electronic) | DOI | MR | Zbl
[15] Mapping class group dynamics on surface group representations, Problems on mapping class groups and related topics (Proc. Sympos. Pure Math.), Volume 74, Amer. Math. Soc., Providence, RI, 2006, pp. 189-214 | MR
[16] Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math., Volume 25 (1972), pp. 635-649 | DOI | MR
[17] Induced automorphisms on Fricke characters of free groups, Trans. Amer. Math. Soc., Volume 208 (1975), pp. 41-50 | DOI | MR | Zbl
[18] Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence, Int. Math. Res. Not., Volume 1 (2004), pp. 1-30 | DOI | MR | Zbl
[19] Dynamics of the sixth Painlevé equation, in Théories asymptotiques et équations de Painlevé, Séminaires et Congrès (2006) no. 14, pp. 103-167 | MR | Zbl
[20] Mapping class groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 523-633 | MR | Zbl
[21] Some dynamical aspects of Painlevé VI, Algebraic Analysis of Differential Equations, In honor of Prof. Takahiro KAWAI on the occasion of his sixtieth birthday, Aoki, T.; Takei, Y.; Tose, N.; Majima, H. (Eds.), 2007, pp. 143-156
[22] Finite branch solutions to Painlevé VI around a fixed singular point, Adv. Math., Volume 217 (2008) no. 5, pp. 1889-1934 | DOI | MR | Zbl
[23] An ergodic study of Painlevé VI, Math. Ann., Volume 338 (2007) no. 2, pp. 295-345 | DOI | MR | Zbl
[24] Algebraic solutions of the sixth Painlevé equation, arXiv:0809.4873v2 [math.CA] (2008), pp. 1-53
[25] Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 (Monogr. Enseign. Math.), Volume 38, Enseignement Math., Geneva, 2001, pp. 465-501 | MR | Zbl
[26] Picard and Chazy solutions to the Painlevé VI equation, Math. Ann., Volume 321 (2001) no. 1, pp. 157-195 | DOI | MR | Zbl
[27] Indra’s pearls, Cambridge University Press, New York, 2002 (The vision of Felix Klein) | MR | Zbl
[28] A note on the transcendency of Painlevé’s first transcendent, Nagoya Math. J., Volume 109 (1988), pp. 63-67 | MR | Zbl
[29] A new Lax pair for the sixth Painlevé equation associated with , Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp. 238-252 | MR | Zbl
[30] Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. (N.S.), Volume 5 (1979) no. 1, pp. 1-79 | MR | Zbl
[31] Studies on the Painlevé equations. I. Sixth Painlevé equation , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 337-381 | DOI | MR | Zbl
[32] Exceptional discrete mapping class group orbits in moduli spaces, Forum Math., Volume 15 (2003) no. 6, pp. 949-954 | DOI | MR | Zbl
[33] Dynamics of the mapping class group on the moduli of a punctured sphere with rational holonomy, Geom. Dedicata, Volume 112 (2005), pp. 65-72 | DOI | MR | Zbl
[34] Deformation of Okamoto-Painlevé pairs and Painlevé equations, J. Algebraic Geom., Volume 11 (2002) no. 2, pp. 311-362 | DOI | MR | Zbl
[35] Nodal curves and Riccati solutions of Painlevé equations, J. Math. Kyoto Univ., Volume 44 (2004) no. 3, pp. 529-568 | MR | Zbl
[36] Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J., Volume 117 (1990), pp. 125-171 | MR | Zbl
[37] Birational canonical transformations and classical solutions of the sixth Painlevé equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 27 (1998) no. 3-4, p. 379-425 (1999) | Numdam | MR | Zbl
Cited by Sources: