Frobenius modules are difference modules with respect to a Frobenius operator. Here we show that over non-archimedean complete differential fields Frobenius modules define differential modules with the same Picard-Vessiot ring and the same Galois group schemes up to extension by constants. Moreover, these Frobenius modules are classified by unramified Galois representations over the base field. This leads among others to the solution of the inverse differential Galois problem for -adic differential equations with (strong) Frobenius structure over -adic differential fields with algebraically closed residue field.
Les modules de Frobenius sont des modules aux différences par rapport à un opérateur de Frobenius. Nous montrons ici que, sur des corps différentiels complets et non archimédiens, les modules de Frobenius définissent des modules différentiels ayant le même anneau de Picard-Vessiot, et quitte à étentre le corps des constantes, le même schéma en groupes de Galois. De plus, ces modules de Frobenius sont classifiés par des représentations galoisiennes non ramifiées sur le corps de base. Cela donne, entre autres, la solution du problème de Galois différentiel inverse pour les équations différentielles -adiques avec une structure de Frobenius (forte), définies sur les corps différentiels - adiques ayant un corps résiduel algébriquement clos.
Revised:
Accepted:
DOI: 10.5802/aif.2508
Classification: 12H25, 12F12, 12H05, 12H10
Keywords: Frobenius modules, iterative differential modules, Galois representations, -adic differential equations, inverse differential Galois theory
@article{AIF_2009__59_7_2805_0, author = {Matzat, B. Heinrich}, title = {Frobenius modules and {Galois} representations}, journal = {Annales de l'Institut Fourier}, pages = {2805--2818}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2508}, zbl = {1185.12004}, mrnumber = {2649339}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2508/} }
TY - JOUR TI - Frobenius modules and Galois representations JO - Annales de l'Institut Fourier PY - 2009 DA - 2009/// SP - 2805 EP - 2818 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2508/ UR - https://zbmath.org/?q=an%3A1185.12004 UR - https://www.ams.org/mathscinet-getitem?mr=2649339 UR - https://doi.org/10.5802/aif.2508 DO - 10.5802/aif.2508 LA - en ID - AIF_2009__59_7_2805_0 ER -
Matzat, B. Heinrich. Frobenius modules and Galois representations. Annales de l'Institut Fourier, Volume 59 (2009) no. 7, pp. 2805-2818. doi : 10.5802/aif.2508. https://aif.centre-mersenne.org/articles/10.5802/aif.2508/
[1] Commutative algebra, Graduate Texts in Mathematics, Tome 150, Springer-Verlag, New York, 1995 (With a view toward algebraic geometry) | MR: 1322960 | Zbl: 0819.13001
[2] Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005 | MR: 2183496 | Zbl: 1128.12009
[3] Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999 | MR: 1711577 | Zbl: 0940.12001
[4] Differential Galois Theory in Positive Characteristic (2001) no. 35 (Preprint)
[5] Frobenius modules and Galois groups, Galois theory and modular forms (Dev. Math.) Tome 11, Kluwer Acad. Publ., Boston, MA, 2004, pp. 233-267 | MR: 2059766 | Zbl: 1111.12002
[6] Integral -adic differential modules, Groupes de Galois arithmétiques et différentiels (Sémin. Congr.) Tome 13, Soc. Math. France, Paris, 2006, pp. 263-292 | MR: 2316354 | Zbl: 1158.13009
[7] From Frobenius structures to differential equations, DART II Proceedings (2009)
[8] Iterative differential equations and the Abhyankar conjecture, J. Reine Angew. Math., Tome 557 (2003), pp. 1-52 | Article | MR: 1978401 | Zbl: 1040.12010
[9] Galois theory for iterative connections and nonreduced Galois groups, Trans. AMS (to appear)
[10] Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Tome 171 (2008) no. 1, pp. 123-174 | Article | MR: 2358057 | Zbl: pre05236753
[11] Algebraic Monodromy Groups of A-Motives (2007) (Ph. D. Thesis)
[12] Bounded -adic differential equations, Circumspice, Various Papers in and around Mathematics in Honor of Arnoud van Rooij (2001) | MR: 1908143
[13] Galois theory of difference equations, Lecture Notes in Mathematics, Tome 1666, Springer-Verlag, Berlin, 1997 | MR: 1480919 | Zbl: 0930.12006
Cited by Sources: