Let be the class of all continuous functions on the annulus in with twisted spherical mean whenever and satisfy the condition that the sphere and ball In this paper, we give a characterization for functions in in terms of their spherical harmonic coefficients. We also prove support theorems for the twisted spherical means in which improve some of the earlier results.
Soit la classe de toutes les fonctions continues sur l’anneau de de moyenne sphérique tordue , pour tout et tels que la sphère et la boule . Dans cet article, nous donnons une caractérisation des fonctions dans en termes de leur coefficients dans le développement en harmoniques sphériques. Nous prouvons également des théorèmes de support pour les moyennes sphériques tordues dans qui améliorent certains résultats antérieurs.
Keywords: Heisenberg group, twisted spherical means, twisted convolution, spherical harmonics, support theorems
Mot clés : groupe d’Heisenberg, moyennes sphériques tordues, convolution tordue, harmoniques sphériques, théorèmes de supports
@article{AIF_2009__59_6_2509_0, author = {Rawat, Rama and Srivastava, R.K.}, title = {Twisted spherical means in annular regions in $\mathbb{C}^n$ and support theorems}, journal = {Annales de l'Institut Fourier}, pages = {2509--2523}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2498}, mrnumber = {2640928}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2498/} }
TY - JOUR AU - Rawat, Rama AU - Srivastava, R.K. TI - Twisted spherical means in annular regions in $\mathbb{C}^n$ and support theorems JO - Annales de l'Institut Fourier PY - 2009 SP - 2509 EP - 2523 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2498/ DO - 10.5802/aif.2498 LA - en ID - AIF_2009__59_6_2509_0 ER -
%0 Journal Article %A Rawat, Rama %A Srivastava, R.K. %T Twisted spherical means in annular regions in $\mathbb{C}^n$ and support theorems %J Annales de l'Institut Fourier %D 2009 %P 2509-2523 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2498/ %R 10.5802/aif.2498 %G en %F AIF_2009__59_6_2509_0
Rawat, Rama; Srivastava, R.K. Twisted spherical means in annular regions in $\mathbb{C}^n$ and support theorems. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2509-2523. doi : 10.5802/aif.2498. https://aif.centre-mersenne.org/articles/10.5802/aif.2498/
[1] Injectivity sets for spherical means on the Heisenberg group, J. Fourier Anal. Appl., Volume 5 (1999) no. 4, pp. 363-372 | DOI | MR | Zbl
[2] Spherical means in annular regions, Comm. Pure Appl. Math., Volume 46 (1993) no. 3, pp. 441-451 | DOI | MR | Zbl
[3] The Radon Transform, Birkhauser, 1983 | Zbl
[4] Injectivity sets for spherical means on the Heisenberg group, J. Math. Anal. Appl., Volume 263 (2001) no. 2, pp. 565-579 | DOI | MR | Zbl
[5] A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on , Ann. Inst. Fourier, Grenoble, Volume 56 (2006) no. 2, pp. 459-473 | DOI | Numdam | MR | Zbl
[6] Function theory in the unit ball of , Springer-Verlag, New York-Berlin, 1980 | MR | Zbl
[7] An introduction to the uncertainty principle, Prog. Math., Volume 217, Birkhauser, Boston, 2004 | MR
Cited by Sources: