Let be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of -modules on induces a fully faithful functor on a subcategory of germs of formal holonomic -modules. Further, given a germ of holonomic -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .
Soit une courbe analytique complexe. Dans cet article nous démontrons que le faisceau sous-analytique des solutions holomorphes tempérées des -modules sur induit un foncteur pleinement fidèle sur une sous-catégorie des germes des -modules holonomes formels. De plus, étant donné un germe de -module holonome, nous obtenons des résultats qui lient le faisceau sous-analytique des solutions tempérées de avec les invariants formels et analytiques classiques de .
Accepted:
DOI: 10.5802/aif.2472
Classification: 34M35, 32B20, 34Mxx
Keywords: -modules, irregular singularities, tempered holomorphic functions, subanalytic
Author's affiliations:
@article{AIF_2009__59_4_1611_0, author = {Morando, Giovanni}, title = {Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants}, journal = {Annales de l'Institut Fourier}, pages = {1611--1639}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {4}, year = {2009}, doi = {10.5802/aif.2472}, zbl = {pre05614567}, mrnumber = {2566969}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2472/} }
TY - JOUR TI - Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants JO - Annales de l'Institut Fourier PY - 2009 DA - 2009/// SP - 1611 EP - 1639 VL - 59 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2472/ UR - https://zbmath.org/?q=an%3Apre05614567 UR - https://www.ams.org/mathscinet-getitem?mr=2566969 UR - https://doi.org/10.5802/aif.2472 DO - 10.5802/aif.2472 LA - en ID - AIF_2009__59_4_1611_0 ER -
%0 Journal Article %T Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants %J Annales de l'Institut Fourier %D 2009 %P 1611-1639 %V 59 %N 4 %I Association des Annales de l’institut Fourier %U https://doi.org/10.5802/aif.2472 %R 10.5802/aif.2472 %G en %F AIF_2009__59_4_1611_0
Morando, Giovanni. Tempered solutions of $\mathcal{D}$-modules on complex curves and formal invariants. Annales de l'Institut Fourier, Volume 59 (2009) no. 4, pp. 1611-1639. doi : 10.5802/aif.2472. https://aif.centre-mersenne.org/articles/10.5802/aif.2472/
[1] Local moduli for meromorphic differential equations, Astérisque (1989) no. 169-170, 217 pages | MR: 1014083 | Zbl: 0683.34003
[2] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | Article | Numdam | MR: 972342 | Zbl: 0674.32002
[3] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Volume 36, Springer-Verlag, Berlin, 1998 (Translated from the 1987 French original, Revised by the authors) | MR: 1659509 | Zbl: 0912.14023
[4] Courbes algébriques planes, Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], Volume 4, Université de Paris VII U.E.R. de Mathématiques, Paris, 1978 | Zbl: 0557.14016
[5] An introduction to o-minimal geometry, Istituti Ed. e Poligrafici Intern., Università di Pisa, Dipartimento di Matematica, Pisa, 2000
[6] Singularités irrégulières, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 5, Société Mathématique de France, Paris, 2007 (Correspondance et documents. [Correspondence and documents]) | MR: 2387754 | Zbl: 1130.14001
[7] Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Séminaire Goulaouic-Schwartz, 1979–1980 (French), École Polytechnique, Palaiseau, 1980, 7 pages (Exp. No. 19) | Numdam | MR: 600704 | Zbl: 0444.58014
[8] The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984) no. 2, pp. 319-365 | Article | MR: 743382 | Zbl: 0566.32023
[9] -modules and microlocal calculus, Translations of Mathematical Monographs, Volume 217, American Mathematical Society, Providence, RI, 2003 (Translated from the 2000 Japanese original by Mutsumi Saito, Iwanami Series in Modern Mathematics) | MR: 1943036 | Zbl: 1017.32012
[10] Ind-sheaves, Astérisque (2001) no. 271, 136 pages | MR: 1827714 | Zbl: 0993.32009
[11] Microlocal study of ind-sheaves. I. Micro-support and regularity, Astérisque (2003) no. 284, pp. 143-164 (Autour de l’analyse microlocale) | MR: 2003419 | Zbl: 1053.35009
[12] On index theorems for linear ordinary differential operators, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 5, pp. 1379-1424 | Article | Numdam | MR: 1600379 | Zbl: 0901.34012
[13] Sur le problème de la division, Studia Math., Volume 18 (1959), pp. 87-136 | MR: 107168 | Zbl: 0115.10203
[14] Équations différentielles à coefficients polynomiaux, Progress in Mathematics, Volume 96, Birkhäuser Boston Inc., Boston, MA, 1991 | MR: 1117227 | Zbl: 0764.32001
[15] Good formal structure for meromorphic flat connections on smooth projective surfaces (arXiv:math.AG/0803.1346) | Zbl: pre05556812
[16] Wild harmonic bundles and wild pure twistor D-modules (arXiv:math.DG/0803.1344)
[17] An existence theorem for tempered solutions of -modules on complex curves, Publ. Res. Inst. Math. Sci., Volume 43 (2007) no. 3, pp. 625-659 | Article | MR: 2361790 | Zbl: 1155.32018
[18] Microlocalization of subanalytic sheaves, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 3, pp. 127-132 | MR: 2344810 | Zbl: 1159.14034
[19] Équations différentielles à points singuliers irréguliers en dimension , Ann. Inst. Fourier (Grenoble), Volume 43 (1993) no. 5, pp. 1619-1688 | Article | Numdam | MR: 1275212 | Zbl: 0803.32005
[20] Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque (2000) no. 263, viii+190 pages | MR: 1741802 | Zbl: 0947.32005
[21] Déformations isomonodromiques et variétés de Frobenius, Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP Sciences, Les Ulis, 2002 (, Mathématiques (Les Ulis). [Mathematics (Les Ulis)]) | MR: 1933784
[22] Asymptotic expansions for ordinary differential equations, Dover Publications Inc., New York, 1987 (Reprint of the 1976 edition) | MR: 919406 | Zbl: 0644.34003
Cited by Sources: