Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
[Résolvante à basse énergie et transformée de Riesz pour l’opérateur de Schrödinger sur des variétés asymptotiquement coniques. II]
Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1553-1610.

Soit M une variété complète de dimension n3 et g une métrique asymptotiquement conique sur M , au sens où M se compactifie en une variété à bord M telle que g soit une métrique de type “scattering” sur M. On étudie le noyau intégral de la résolvante (P+k 2 ) -1 et la transformée de Riesz T de l’opérateur P=Δ g +V, où Δ g est le laplacien positif associé à g et V un potentiel réel, lisse sur M et s’annulant au bord.

Dans le premier article nous avons supposé que 0 n’est ni résonance ni valeur propre pour P et montré (i) que le noyau de la résolvante est conormal polyhomogène sur une version éclatée de M 2 ×[0,k 0 ], et (ii) que T est borné sur L p (M ) pour 1<p<n, ce qui optimal sauf si V0 ou bien M a seulement un bout.

Dans le présent article, on effectue une analyse similaire tout en autorisant les cas où 0 est résonance ou valeur propre. On montre là encore (sauf si n=4 et 0 est résonance) que le noyau de la résolvante est polyhomogène sur le même espace, et on donne l’intervalle de p (génériquement n/(n-2)<p<n/3) pour lequel T est borné sur L p (M) quand 0 est valeur propre.

Let M be a complete noncompact manifold of dimension at least 3 and g an asymptotically conic metric on M , in the sense that M compactifies to a manifold with boundary M so that g becomes a scattering metric on M. We study the resolvent kernel (P+k 2 ) -1 and Riesz transform T of the operator P=Δ g +V, where Δ g is the positive Laplacian associated to g and V is a real potential function smooth on M and vanishing at the boundary.

In our first paper we assumed that P has neither zero modes nor a zero-resonance and showed (i) that the resolvent kernel is polyhomogeneous conormal on a blown up version of M 2 ×[0,k 0 ], and (ii) T is bounded on L p (M ) for 1<p<n, which range is sharp unless V0 and M has only one end.

In the present paper, we perform a similar analysis allowing zero modes and zero-resonances. We show once again that (unless n=4 and there is a zero-resonance) the resolvent kernel is polyhomogeneous on the same space, and we find the precise range of p (generically n/(n-2)<p<n/3) for which T is bounded on L p (M) when zero modes are present.

DOI : 10.5802/aif.2471
Classification : 58J50, 42B20, 35J10
Keywords: Asymptotically conic manifold, scattering metric, resolvent kernel, low energy asymptotics, Riesz transform, zero-resonance
Mot clés : variété asymptotiquement conique, métrique scattering, noyau de la résolvante, asymptotique à basse énergie, transformée de Riesz, zéro-résonance

Guillarmou, Colin 1 ; Hassell, Andrew 2

1 Université de Nice Laboratoire J. Dieudonné Parc Valrose 06100 Nice(FRANCE)
2 Australian National University Department of Mathematics Canberra ACT 0200 (AUSTRALIA)
@article{AIF_2009__59_4_1553_0,
     author = {Guillarmou, Colin and Hassell, Andrew},
     title = {Resolvent at low energy and {Riesz} transform for {Schr\"odinger} operators on asymptotically conic manifolds. {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {1553--1610},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {4},
     year = {2009},
     doi = {10.5802/aif.2471},
     mrnumber = {2566968},
     zbl = {1175.58011},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2471/}
}
TY  - JOUR
AU  - Guillarmou, Colin
AU  - Hassell, Andrew
TI  - Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1553
EP  - 1610
VL  - 59
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2471/
DO  - 10.5802/aif.2471
LA  - en
ID  - AIF_2009__59_4_1553_0
ER  - 
%0 Journal Article
%A Guillarmou, Colin
%A Hassell, Andrew
%T Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II
%J Annales de l'Institut Fourier
%D 2009
%P 1553-1610
%V 59
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2471/
%R 10.5802/aif.2471
%G en
%F AIF_2009__59_4_1553_0
Guillarmou, Colin; Hassell, Andrew. Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II. Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1553-1610. doi : 10.5802/aif.2471. https://aif.centre-mersenne.org/articles/10.5802/aif.2471/

[1] Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Dover Publications, 1964 | MR | Zbl

[2] Agmon, S. Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982 | MR | Zbl

[3] Carron, G. A topological criterion for the existence of half-bound states, J. London Math. Soc., Volume 65 (2002), pp. 757-768 | DOI | MR | Zbl

[4] Carron, G.; Coulhon, T.; Hassell, A. Riesz transform and L p cohomology for manifolds with Euclidean ends, Duke Math. J., Volume 133 (2006) no. 1, pp. 59-93 | DOI | MR | Zbl

[5] Guillarmou, C.; Hassell, A. Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I., Math. Ann., Volume 341 (2008) no. 4, pp. 859-896 | DOI | MR | Zbl

[6] Jensen, A. Spectral properties of Schrödinger operators and time-decay of the wave functions: results in L 2 ( m ),m5, Duke Math. J., Volume 47 (1980), pp. 57-80 | DOI | MR | Zbl

[7] Jensen, A.; Kato, T. Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979), pp. 583-611 | DOI | MR | Zbl

[8] Li, H.-Q. La transformée de Riesz sur les variétés coniques, J. Funct. Anal., Volume 168 (1999) no. 1, pp. 145-238 | DOI | MR | Zbl

[9] Melrose, R. B. Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., Volume 3 (1992), pp. 51-61 | DOI | MR | Zbl

[10] Melrose, R. B. The Atiyah-Patodi-Singer index theorem, AK Peters, Wellesley, 1993 | MR | Zbl

[11] Murata, M. Asymptotic expansions in time for solutions of Schrödinger-Type Equations, Volume 49 (1982), pp. 10-56 | MR | Zbl

[12] Wang, X-P. Asymptotic expansion in time of the Schrödinger group on conical manifolds, to appear, Annales Inst. Fourier, 2006 | Numdam | MR | Zbl

Cité par Sources :