[Induction généralisée des cellules de Kazhdan-Lusztig]
Suivant Lusztig, nous considérons un groupe de Coxeter avec une fonction de poids. Geck a montré que les cellules de Kazhdan-Lusztig sont compatibles avec les sous-groupes paraboliques. Dans cet article nous généralisons cet argument à des sous-ensembles de qui ne sont pas forcément des sous-groupes paraboliques. Nous obtenons deux applications : nous montrons que sous certaines hypothèses sur les paramètres les cellules de certains sous-groupes paraboliques sont aussi des cellules de et nous décomposons le groupe de Weyl affine de type en cellules gauches et bilatères pour toute une classe de fonctions de poids.
Following Lusztig, we consider a Coxeter group together with a weight function. Geck showed that the Kazhdan-Lusztig cells of are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of are cells in the whole group, and we decompose the affine Weyl group of type into left and two-sided cells for a whole class of weight functions.
Keywords: Coxeter groups, Affine Weyl groups, Hecke algebras, Kazhdan-Lusztig cells, Unequal parameters
Mot clés : groupes de Coxeter, Groupes de Weyl affines, Algèbre de Hecke, Cellules de Kazhdan-Lusztig, Paramètres inégaux
Guilhot, Jérémie 1, 2
@article{AIF_2009__59_4_1385_0, author = {Guilhot, J\'er\'emie}, title = {Generalized {Induction} of {Kazhdan-Lusztig} cells}, journal = {Annales de l'Institut Fourier}, pages = {1385--1412}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {4}, year = {2009}, doi = {10.5802/aif.2468}, mrnumber = {2566965}, zbl = {1186.20004}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2468/} }
TY - JOUR AU - Guilhot, Jérémie TI - Generalized Induction of Kazhdan-Lusztig cells JO - Annales de l'Institut Fourier PY - 2009 SP - 1385 EP - 1412 VL - 59 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2468/ DO - 10.5802/aif.2468 LA - en ID - AIF_2009__59_4_1385_0 ER -
%0 Journal Article %A Guilhot, Jérémie %T Generalized Induction of Kazhdan-Lusztig cells %J Annales de l'Institut Fourier %D 2009 %P 1385-1412 %V 59 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2468/ %R 10.5802/aif.2468 %G en %F AIF_2009__59_4_1385_0
Guilhot, Jérémie. Generalized Induction of Kazhdan-Lusztig cells. Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1385-1412. doi : 10.5802/aif.2468. https://aif.centre-mersenne.org/articles/10.5802/aif.2468/
[1] Cells for two Coxeter groups, Comm. Algebra, Volume 14 (1986), pp. 1253-1286 | DOI | MR | Zbl
[2] On generalized cells in affine Weyl groups, Journal of Algebra, Volume 191 (1997), pp. 149-173 | DOI | MR | Zbl
[3] The decomposition into left cells of the affine Weyl group of type , Journal of Algebra, Volume 163 (1994), pp. 692-728 | DOI | MR | Zbl
[4] An abstract model for Bruhat intervals, European J. Combin., Volume 21 (2000), pp. 197-222 | DOI | MR | Zbl
[5] The decomposition into cells of the affine Weyl group of type , Comm. Algebra, Volume 16 (1988), pp. 1383-1409 | DOI | MR | Zbl
[6] On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc., Volume 35 (2003) no. 5, pp. 608-614 | DOI | MR | Zbl
[7] On the determination of Kazhdan-Lusztig cells for affine Weyl group with unequal parameters, Journal of Algebra, Volume 318 (2007), pp. 893-917 | DOI | MR | Zbl
[8] Computations in Generalized induction of Kazhdan-Lusztig cells, available at http://arxiv.org/abs/0810.5165, 2008
[9] On the lowest two-sided cell in affine Weyl groups, Represent. Theory, Volume 12 (2008), pp. 327-345 | DOI | MR
[10] Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math., Volume 36 (1980), pp. 185-203 (Amer. Math. Soc.) | MR | Zbl
[11] Hecke algebras and Jantzen’s generic decomposition patterns, Advances in Mathematics, Volume 37 (1980), pp. 121-164 | DOI | MR | Zbl
[12] Cells in affine Weyl groups, Advanced Studies in Pure Math., Volume 6 (1985), pp. 255-287 | MR | Zbl
[13] The two-sided cells of the affine Weyl group of type , Math. Sci. Res. Inst. Publ, Volume 4 (1985), pp. 275-283 | DOI | MR | Zbl
[14] Hecke algebras with unequal parameters, 18, CRM Monographs Ser., 2003 (Amer. Math. Soc. , Providence, RI) | MR | Zbl
[15] GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4 (1997)
[16] The Kazhdan-Lusztig cells in certain affine Weyl groups, Lectures Notes in Math., 1179, Springer-Verlag, 1986 | MR | Zbl
[17] Left cells in affine Weyl group , Osaka J. Math., Volume 31 (1994), pp. 27-50 | MR | Zbl
[18] Left cells in affine Weyl groups, Tokohu Math. J., Volume 46 (1994), pp. 105-124 | DOI | MR | Zbl
[19] Representations of affine Hecke algebras, Lectures Notes in Math., 1587, Springer-Verlag, 1994 | MR | Zbl
Cité par Sources :