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GENERALIZED INDUCTION OF KAZHDAN-LUSZTIG
CELLS

by Jérémie GUILHOT

Abstract. — Following Lusztig, we consider a Coxeter group W together with
a weight function. Geck showed that the Kazhdan-Lusztig cells of W are compat-
ible with parabolic subgroups. In this paper, we generalize this argument to some
subsets of W which may not be parabolic subgroups. We obtain two applications:
we show that under specific technical conditions on the parameters, the cells of
certain parabolic subgroups of W are cells in the whole group, and we decompose
the affine Weyl group of type G into left and two-sided cells for a whole class of
weight functions.

Résumé. — Suivant Lusztig, nous considérons un groupe de Coxeter W avec
une fonction de poids. Geck a montré que les cellules de Kazhdan-Lusztig sont
compatibles avec les sous-groupes paraboliques. Dans cet article nous généralisons
cet argument à des sous-ensembles de W qui ne sont pas forcément des sous-groupes
paraboliques. Nous obtenons deux applications : nous montrons que sous certaines
hypothèses sur les paramètres les cellules de certains sous-groupes paraboliques
sont aussi des cellules de W et nous décomposons le groupe de Weyl affine de type
G en cellules gauches et bilatères pour toute une classe de fonctions de poids.

1. Introduction

This paper is concerned with the partition of a Coxeter group W (more
specifically affine Weyl groups) into Kazhdan-Lusztig cells with respect to a
weight function, following the general setting of Lusztig [14]. This is known
to play an important role in the representation theory of the corresponding
Hecke algebra, Lie algebra and group of Lie type.

In the case where W is an integral and bounded Coxeter group (see [14,
Chap. 1]) and L is constant on the generators of W (equal parameter case),
there is an interpretation of the Kazhdan-Lusztig polynomials in terms of

Keywords: Coxeter groups, Affine Weyl groups, Hecke algebras, Kazhdan-Lusztig cells,
Unequal parameters.
Math. classification: 20C08.



1386 Jérémie GUILHOT

intersection cohomology (see [10]) which leeds to many deep properties, for
which no elementary proofs are known. For instance, the coefficients of the
Kazhdan-Lusztig polynomials are non-negative integers. In that case, the
left cells have been explicitly described for the affine Weyl groups of type
Ãr, r ∈ N (see [13, 16]), ranks 2, 3 (see [1, 5, 12]) and types B̃4, C̃4 and D̃4

(see [3, 17, 18]).
Much less is known for unequal parameters. Lusztig has formulated a

number of precise conjectures in that case (see [14, §14, P1-P15]). The left
cells have been explicitly described for the affine Weyl groups of type Ã1

for any parameters ([14]) and B̃2 when the parameters are coming from
a graph automorphism ([2]). Note that the proof in the case B̃2 involved
the positivity property of the Kazhdan-Lusztig polynomials in the equal
parameter case.

One of the few things which are known in the general case of unequal
parameters, is the compatibility of the left cells with parabolic subgroups;
see [6]. In a precise sense, any left cell of a parabolic subgroup can be
“induced” to obtain a union of left cells of the whole group W . The main
observation of this paper is that the methods of [6] work in somewhat more
general settings, so that we can “induce” from subsets of W which are
not parabolic subgroups (see Section 3). This leads to our “Generalized
Induction Theorem”.

We discuss two applications of this theorem. First we show the following
result; see Section 4.

Theorem 1.1. — Let (W,S) be an arbitrary Coxeter system together
with a weight function L. Let W ′ ⊆ W be a bounded standard parabolic
subgroup with generating set S′ and let N ∈ N be a bound for W ′. If
L(t) > N for all t ∈ S − S′ then the left cells (resp. two-sided cells) of W ′,
considered as a proper Coxeter group, are left cells (resp. two-sided cells)
of W .

Then, we decompose the affine Weyl groups G̃2 into left and two-sided
cells for a whole class of weight functions. Namely, the ones which satisfy
L(s1) > 4L(s2) = 4L(s3) where

G̃2 := 〈s1, s2, s3 | (s1s2)6 = 1, (s2s3)3 = 1, (s1s3)2 = 1〉.

We also determine the partial left (resp. two-sided) order on left (resp. two-
sided) cells; see Section 6.

ANNALES DE L’INSTITUT FOURIER



KAZHDAN-LUSZTIG CELLS 1387

2. Hecke algebra and geometric realization of an affine
Weyl group

2.1. Hecke algebra and Kazhdan-Lusztig cells

In this section, (W,S) denotes an arbitrary Coxeter system. The basic
reference is [14]. Let L be a weight function. Recall that a weight function
on W is a function L : W → Z such that L(ww′) = L(w)+L(w′) whenever
`(ww′) = `(w)+ `(w′). In this paper, we shall only consider the case where
L(w) > 0 for all w 6= e (where e is the identity element of W ). A weight
function is completely determined by its values on S and must only satisfy
L(s) = L(t) if s, t ∈ S are conjugate.

Let A = Z[v, v−1] and H be the Iwahori-Hecke algebra corresponding to
(W,S) with parameters {L(s) | s ∈ S}. Thus H has an A-basis {Tw | w ∈
W}, called the standard basis, with multiplication given by

TsTw =

{
Tsw, if sw > w,

Tsw + (vL(s) − v−L(s))Tw, if sw < w,

(here, “<” denotes the Bruhat order) where s ∈ S and w ∈W .
Let A<0 = v−1Z[v−1] and A60 = Z[v−1]. For x, y ∈W we set

TxTy =
∑
z∈W

fx,y,zTz where fx,y,z ∈ A.

We say that N ∈ N is a bound for W if v−Nfx,y,z ∈ A60 for all x, y, z in
W . If there exists such a N , we say that W is bounded.
Let a 7→ a be the involution of A which takes vn to v−n for all n ∈ Z. We
can extend it to a ring involution from H to itself with∑

w∈W

awTw =
∑

w∈W

awT−1
w−1 , where aw ∈ A.

For w ∈W there exists a unique element Cw ∈ H such that

Cw = Cw and Cw = Tw +
∑
y∈W
y<w

Py,wTw

where Py,w ∈ A<0 for y < w. In fact, the set {Cw, w ∈ W} forms a basis
of H, known as the Kazhdan-Lusztig basis. The elements Py,w are called
the Kazhdan-Lusztig polynomials. We set Pw,w = 1 for any w ∈W .

Let w ∈W and s ∈ S, we have the following multiplication formula

CsCw =


Csw +

∑
z;sz<z<w

Ms
z,wCz, if w < sw,

(vs + v−1
s )Cw, if sw < w,

TOME 59 (2009), FASCICULE 4



1388 Jérémie GUILHOT

where Ms
z,w ∈ A satisfies

Ms
y,w = Ms

y,w, ∑
z;y6z<w;sz<z

Py,zM
s
z,w

− vsPy,w ∈ A<0.

It is shown in [14, Proposition 6.4] that Ms
y,w is a Z-linear combination of

vn such that −L(s) + 1 6 n 6 L(s)− 1.
We have a similar formula for the multiplication on the right by Cs, we
obtain some polynomials Ms,r

z,w which satisfy Ms,r
z,w = Ms

z−1,w−1 .
The multiplication rule between the standard basis and the Kazhdan-

Lusztig basis is as follows

TsCw =

Csw − v−L(s)Cw +
∑

z;sz<z<w
Ms

z,wCz, if w < sw,

vL(s)Cw, if sw < w.

Let y, w ∈W . We write y ←L w if there exists s ∈ S such that Cy appears
with a non-zero coefficient in the expression of TsCw (or equivalently CsCw)
in the Kazhdan-Lusztig basis. The Kazhdan-Lusztig left pre-order 6L on
W is the transitive closure of this relation. One can see that

HCw ⊆
∑

y6Lw

ACy for any w ∈W .

The equivalence relation associated to 6L will be denoted by ∼L and the
corresponding equivalence classes are called the left cells of W . Similarly,
we define 6R, ∼R and right cells. We say that x 6LR y if there exists a
sequence

x = x0, x1, ..., xn = y

such that for all 1 6 i 6 n we have xi−1 ←L xi or xi−1 ←R xi. We write
∼LR for the associated equivalence relation and the equivalence classes are
called two-sided cells. One can see that

HCwH ⊆
∑

y6LRw

ACy for any w ∈W .

The pre-order 6L (resp. 6LR) induces a partial order on the left (resp. two-
sided) cells of W .

For w ∈W we set L(w) = {s ∈ S|sw < w} and R(w) = {s ∈ S|w > ws}.
It is shown in [14, §8] that if y 6L w thenR(w) ⊆ R(y). Similarly, if y 6R w

then L(w) ⊆ L(y).
We now introduce a definition.

ANNALES DE L’INSTITUT FOURIER



KAZHDAN-LUSZTIG CELLS 1389

Definition 2.1. — Let B be a subset of W . We say that B is a left
ideal of W if and only if the A-submodule of H generated by {Cw|w ∈ B}
is a left ideal. Similarly one can define right and two-sided ideals of W .

Remark 2.2. — Here are some straightforward consequences of this def-
inition
– Let B be a left ideal and let w ∈ B. We have

HCw ⊆
∑
y∈B

ACy.

In particular, if y 6L w then y ∈ B and B is a union of left cells.
– A union of left ideals of W is a left ideal.
– An intersection of left ideals is a left ideal.
– A left ideal which is stable by taking the inverse is a two-sided ideal. In
particular it is a union of two-sided cells.

Example 2.3. — Let J be a subset of S. We set

RJ := {w ∈W | J ⊆ R(w)} and LJ := {w ∈W | J ⊆ L(w)}.

Then the set RJ is a left ideal of W . Indeed let w ∈ RJ and y ∈ W be
such that y 6L w. Then we have J ⊆ R(w) ⊆ R(y) and y ∈ RJ . Similarly
one can see that LJ := {w ∈W |J ⊆ L(w)} is a right ideal of W .

2.2. A geometric realization

In this section, we present a geometric realization of an affine Weyl group.
The basic references are [2, 11, 19].

Let V be an euclidean space of finite dimension r > 1. Let Φ be an
irreducible root system of rank r and Φ̌ ⊆ V ∗ be the dual root system. We
denote the coroot corresponding to α ∈ Φ by α̌ and we write 〈x, y〉 for the
value of y ∈ V ∗ at x ∈ V . Fix a set of positive roots Φ+ ⊆ Φ. Let W0 be
the Weyl group of Φ. For α ∈ Φ+ and n ∈ Z, we define a hyperplane

Hα,n = {x ∈ V | 〈x, α̌〉 = n}.

Let
F = {Hα,n | α ∈ Φ+, n ∈ Z}.

Any H ∈ F defines an orthogonal reflection σH with fixed point set H. We
denote by Ω the group generated by all these reflections, and we regard Ω
as acting on the right on V . An alcove is a connected component of the set

V −
⋃

H∈F
H.

TOME 59 (2009), FASCICULE 4



1390 Jérémie GUILHOT

Ω acts simply transitively on the set of alcoves X.
Let S be the set of Ω-orbits in the set of faces (codimension 1 facets) of

alcoves. Then S consists of r + 1 elements which can be represented as the
r + 1 faces of an alcove. If a face f is contained in the orbit t ∈ S, we say
that f is of type t.

Let s ∈ S. We define an involution A→ sA of X as follows. Let A ∈ X;
then sA is the unique alcove distinct from A which shares with A a face
of type s. The set of such maps generates a group of permutations of X

which is a Coxeter group (W,S). In our case, it is the affine Weyl group
usually denoted W̃0. We regard W as acting on the left on X. It acts simply
transitively and commutes with the action of Ω.

Let A0 be the fundamental alcove defined by

A0 = {x ∈ V | 0 < 〈x, α̌〉 < 1 for all α ∈ Φ+}.

We illustrate this realization in Figure 2.1 in the case where W is an
affine Weyl group of type G̃2

W := 〈s1, s2, s3 | (s1s2)6 = 1, (s2s3)3 = 1, (s1s3)2 = 1〉.

The thick arrows represent the set of positive roots Φ+, zA0 and yA0

are the image of the fundamental alcove A0 under the action of y =
s2s1s2s1s2s3s2 ∈W and z = s3s2s1s2s1s2 ∈W .

A0

zA0

yA0

Figure 2.1. Geometric realization of G̃2

ANNALES DE L’INSTITUT FOURIER
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3. Generalized induction of left cells

3.1. Main result

Let (W,S) be a Coxeter group together with a weight function L. Let
H be the associated Iwahori-Hecke algebra. In this section, we want to
generalize the results of [6] on the induction of left cells.

We consider a subset U ⊆ W and a collection {Xu | u ∈ U} of subsets
of W satisfying the following conditions

I1. for all u ∈ U , we have e ∈ Xu,
I2. for all u ∈ U and x ∈ Xu we have `(xu) = `(x) + `(u),
I3. for all u, v ∈ U such that u 6= v we have Xuu ∩Xvv = ∅,
I4. the submodule M := 〈TxCu| u ∈ U, x ∈ Xu〉A ⊆ H is a left ideal,
I5. for all u ∈ U , x ∈ Xu and u1 < u we have

Pu1,uTxTu1 is an A<0-linear combination of Tz.

Let u ∈ U and x ∈ Xu. We have

TxCu = Txu + an A-linear combination of Tz with `(z) < `(xu).

Since the set {Tw|w ∈ W} is a basis of H, using I3, one can see that
B = {TxCu|u ∈ U, x ∈ Xu} is a basis of M.

Let u ∈ U and z ∈W . Using I1, I4 and the fact that B is a basis of M,
we can write

TzCu =
∑

u∈U,x∈Xu

ax,uTxCu for some ax,u ∈ A.

Let � be the relation on U defined as follows. Let u, v ∈ U . We write v � u

if there exist x ∈ W and z ∈ Xv such that TzCv appears with a non-zero
coefficient in the expression of TxCu in the basis B. We still denote by
� the pre-order induced by this relation (i.e the transitive closure). Since
Cu ∈M, we have

HCu =
∑

v�u,z∈Xv

ATzCv.

Remark 3.1. — If we choose U = W and Xw = {e} for all w ∈ W , the
pre-order � is the left pre-order 6L on W .

We are now ready to state the main result of this section.

Theorem 3.2. — Let U be a subset of W and {Xu|u ∈ U} be a col-
lection of subsets of W satisfying conditions I1–I5. Let U ⊆ U be such
that

v � u ∈ U =⇒ v ∈ U .

TOME 59 (2009), FASCICULE 4



1392 Jérémie GUILHOT

Then, the set
{xu|u ∈ U , x ∈ Xu}

is a left ideal of W .

The proof of this theorem will be given in the next section. We have the
following corollary.

Corollary 3.3. — Let C be an equivalence class on U with respect to
�. Then the subset {xu|u ∈ C, x ∈ Xu} of W is a union of left cells.

Proof. — Let v ∈ C, y ∈ Xv and z ∈ W be such that z ∼L yv. Consider
the set U = {u ∈ U |u � v}. Then U satisfies the requirement of Theorem
3.2, thus B := {xu|u ∈ U , x ∈ Xu} is a left ideal of W . Since z 6L yv and
yv ∈ B, there exist uz ∈ U and x ∈ Xuz

such that z = xuz and uz � v.
We also have yv 6L xuz. Applying the same argument as above to the set
{u ∈ U |u � uz} yields that there exists uy ∈ U and w ∈ Xuy

such that
yv = wuy and uy � uz. By condition I3, we see that uy = v. Thus uz ∈ C
and the result follows. �

Remark 3.4. — In [6], Geck proved the following theorem, where (W,S)
is an arbitrary Coxeter system.

Theorem 3.5. — Let W ′ ⊆ W be a parabolic subgroup of W and let
X ′ be the set of all w ∈ W such that w has minimal length in the coset
wW ′. Let C be a left cell of W ′. Then X ′C is a union of left cells of W .

Let U = W ′ and for all w ∈W ′ let Xw = X ′. We claim that this theorem
is a special case of Theorem 3.2 and Corollary 3.3. Indeed, conditions I1–I3
and I5 are clearly satisfied. Condition I4 is a straightforward consequence
of Deodhar’s lemma; see [6, Lemma 2.2]. Hence, it is sufficient to show
that the pre-order � on U = W ′ coincides with the Kazhdan-Lusztig left
pre-order defined with respect to W ′ (denoted 6′

L) and the corresponding
parabolic subalgebra H′ := 〈Tw | w ∈W ′〉A ⊆ H. In other words, we need
to show the following

u 6′
L v ⇐⇒ u � v.

Let u, v ∈ W ′ such that u 6′
L v. We may assume that there exists s ∈ S′

(where S′ is the generating set of W ′) such that

TsCv =
∑

w∈W ′

aw,vCw where aw,v ∈ A and au,v 6= 0.

Since Cw ∈ B for all w ∈ W ′, this is the expression of TsCv in B, which
shows that u � v.

ANNALES DE L’INSTITUT FOURIER
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Conversely, let u, v ∈W ′ such that u � v. We may assume that there exist
z ∈W and x ∈ X ′ such that

TzCv =
∑

w∈W ′,y∈X′

ayw,zvTyCw where ayw,zv ∈ A and axu,zv 6= 0.

We can write uniquely z = z1z0 where z0 ∈ W ′, z1 ∈ X ′ and `(z) =
`(z0) + `(z1). Then, we have

TzCv = Tz1(Tz0Cv) = Tz1

 ∑
w∈W ′,w6′

L
v

aw,vCw

 =
∑

w∈W ′,w6′
L

v

aw,vTz1Cw

and this is the expression of TzCv in the basis B. We assumed that TxCu

appears with a non-zero coefficient, thus u 6′
L v as desired.

3.2. Proof of Theorem 3.2

We keep the setting of the last section and we introduce the following
relation. Let u, v ∈ U , x ∈ Xu and y ∈ Xv. We write xu @ yv if xu < yv

(Bruhat order) and u � v. We write xu v yv if xu @ yv or x = y and
u = v.

The main reference is the proof of [6, Theorem 1].

Lemma 3.6. — Let v ∈ U , y ∈ Xu. We have

T−1
y−1Cv =

∑
u∈U, x∈Xu

rxu,yvTxCu

where ryv,yv = 1 and rxu,yv = 0 unless xu v yv.

Proof. — Let v ∈ U and y ∈ Xv. We have

T−1
y−1 = Ty +

∑
z<y

Rz,yTz

where Rz,y ∈ A are the usual R-polynomials as defined in [14, §4.3]. We
obtain

T−1
y−1Cv =

(
Ty +

∑
z<y

Rz,yTz

)
Cv

= TyCv +
∑
z<y

Rz,yTzCv.

Now we also have

TzCv = A-linear combination of TxCu where u � v and x ∈ Xu.

TOME 59 (2009), FASCICULE 4
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We still have to show that if TxCu appears in this sum then xu < yv.
This comes from the fact that TzCv, expressed in the standard basis, is an
A-linear combination of term of the form Tw0.w1 where w0 6 z and w1 6 v.
In particular, since z < y we have w0w1 < yv. Then, expressing the right
hand side of the equality in the standard basis, one can see that we must
have xu < yv if TxCu appears with a non-zero coefficient.
Finally, by definition of v, we see that

T−1
y−1Cv = TyCv +

∑
xu@yv

rxu,yvTxCu.

The result follows. �

Lemma 3.7. — Let u, v ∈ U , x ∈ Xu and y ∈ Xv. Then∑
w∈U,z∈Xw

xuvzwvyv

rxu,zwrzw,yv = δx,yδu,v

Proof. — Since the map h 7→ h is an involution and Cv = Cv, we have

TyCv = T−1
y−1Cv

=
∑

w∈U,z∈Xw

rzw,yvTzCw

=
∑

w∈U,z∈Xw

rzw,yvT−1
z−1Cw

=
∑

w∈U,z∈Xw

rzw,yv

 ∑
u∈U,x∈Xu

rxu,zwTxCu


=

∑
u∈U,x∈Xu

 ∑
w∈U,z∈Xw

rxu,zwrzw,yv

TxCu.

Since B is a basis of M, using Lemma 3.6 and comparing the coefficients
yield the desired result. �

Proposition 3.8. — Let v ∈ U and y ∈ Xv. We have

Cyv = TyCv +
∑

u∈U,x∈Xu

xu@yv

p∗xu,yvTxCu where p∗xu,yv ∈ A<0.

Proof. — By Lemma 3.7, there exists a unique family (p∗xu,yv)xu@yv of
polynomials in A<0 such that

C̃yv := TyCv +
∑

u∈U,x∈Xu

xu@yv

p∗xu,yvTxCu

ANNALES DE L’INSTITUT FOURIER



KAZHDAN-LUSZTIG CELLS 1395

is stable under the ¯ involution; see [4, p. 214], it contains a general setting
to include the argument in [6, Proposition 3.3] or in [14, Theorem 5.2].

Moreover, we have

C̃yv = TyCv +
∑

u∈U,x∈Xu

xu@yv

p∗xu,yvTxCu

= Ty

(
Tv +

∑
v1<v

Pv1,vTv1

)
+

∑
u∈U,x∈Xu

xu@yv

p∗xu,yvTx

∑
u16u

Pu1,uTu1

= Tyv +

(∑
v1<v

Pv1,vTyTv1

)
+

∑
u∈U,x∈Xu

xu@yv

∑
u16u

p∗xu,yvPu1,uTxTu1 .

By condition I5, all the terms Pv1,vTyTv1 occurring in the first sum and
all the terms p∗xu,yvPu1,uTxTu1 occurring in the second sum are A<0-linear
combinations of Tz with `(z) < `(yv). Thus

C̃yv = Tyv + an A<0-linear combination of Tz with `(z) < `(yv)

and by definition and unicity of the Kazhdan-Lusztig basis, this implies
that C̃yv = Cyv. �

Let U ⊆ U be as in Theorem 3.2. By definition of � one can see that

MU := 〈TyCv | v ∈ U , y ∈ Xv〉A ⊆ H

is a left ideal.

Corollary 3.9. —

MU = 〈Cyv | v ∈ U , y ∈ Xv〉A.

Proof. — Let v ∈ U and y ∈ Xv, using the previous proposition, we see
that

Cyv = TyCv +
∑

u∈U,x∈Xu

xu@yv

p∗xu,yvTxCu.

Thus Cyv ∈ MU . Now, a straightforward induction on the order relation
v yields

TyCv = Cyv + an A-linear combination of Cxu

where u ∈ U , x ∈ Xu and xu @ yv.
This yields the desired assertion. �

TOME 59 (2009), FASCICULE 4
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We can now prove Theorem 3.2.
Let U be a subset of U such that

v � u ∈ U =⇒ v ∈ U .

Then MU = 〈TzCw | w ∈ U , z′ ∈ Xw〉A ⊆ H is a left ideal. We want to
show that the set B := {yv|v ∈ U , y ∈ Xv} is a left ideal of W .
Let v ∈ U , y ∈ Xv and z ∈ W be such that z 6L yv. We may assume
that there exists s ∈ S such that Cz appears with a non-zero coefficient
in the expression of TsCyv in the Kazhdan-Lusztig basis. By Corollary 3.9,
we have Cyv ∈ MU . Since MU is a left ideal we have TsCyv ∈ MU . Thus,
using Corollary 3.9 once more, we have

TsCyv =
∑

u∈U,x∈Xu

axu,yvCxu where axu,yv ∈ A

and this is the expression of TsCyv in the Kazhdan-Lusztig basis. The fact
that Cz appears with a non-zero coefficient in that expression implies that
z = xu for some u ∈ U and x ∈ Xu. Thus z ∈ B, as desired. �

4. Cells in certain parabolic subgroups

The aim of this section is to prove Theorem 1.1. We will actually prove
a stronger result. Let (W,S) be an arbitrary Coxeter system. For J ⊆ S,
we denote by XJ the set of minimal left coset representatives with respect
to the subgroup generated by J . Recall that RJ = {w ∈ W | J ⊆ R(w)}.
Let W ′ ⊆ W be a standard parabolic subgroup with generating set S′.
Furthermore, assume that (W ′, S′) is bounded by N ∈ N.

Theorem 4.1. — Let t ∈ S − S′ be such that L(t) > N . Then

{w ∈W | w = yw′, y ∈ R{t} ∩XS′ , w
′ ∈W ′}

is a left ideal of W .

Remark 4.2. — This theorem implies Theorem 1.1. Indeed, assume that,
for all t ∈ S − S′ we have L(t) > N . Then⋃

t∈S−S′

{w ∈W | w = yw′, y ∈ R{t} ∩XS′ , w
′ ∈W ′} = W −W ′

is a left ideal of W . Furthermore, since it is stable by taking the inverse,
it’s a two-sided ideal. Thus W −W ′ is a union of cells and so is W ′. Let
y, w ∈ W ′ be such that y 6L w in W . Then using Theorem 3.5, one can
easily see that y 6L w in W ′. Similarly, if y 6R w in W then y 6R w in
W ′. The theorem follows.
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Until the end of this section, we fix t ∈ S − S′ such that L(t) > N .
Let U = tW ′. For u ∈ U let

Xu = (R{t} ∩XS′)t.

We want to apply Theorem 3.2 to the set U . One can directly check that
conditions I1–I3 hold. In order to check conditions I4–I5 we need some
preliminary lemmas. We denote by H′ the Hecke algebra associated to
(W ′, S′) and the weight function L (more precisely the restriction of L

to S′).

Lemma 4.3. — Let w′ ∈W ′. We have

CtCw′ = Ctw′ and TtCw′ = Ctw′ − v−L(t)Cw′

Proof. — We know that

CtCw′ = Ctw′ +
∑

tz<z<w′

M t
z,w′Cz,

TtCw′ = Ctw′ − v−L(t)Cw′ +
∑

tz<z<w′

M t
z,w′Cz.

But z < w′ implies that z ∈ W ′, thus we cannot have tz < z. The result
follows. �

Remark 4.4. — Let s′ ∈ S′. Since L(t) 6= L(s′), the order of s′t has to be
even or infinite (otherwise, s′ and t would be conjugate and L(s′) = L(t)).

Lemma 4.5. — Let s′ ∈ S′ and w ∈ W ′. Let m ∈ N be such that m is
less than or equal to the order of s′t. We have

T(s′t)mCw =
∑

w′∈W ′

m−1∑
i=0

aw′,iT(s′t)is′Ctw′ + h′m

where aw′,i ∈ A and h′m ∈ H′, and

T(ts′)mCw =
∑

w′∈W ′

m−1∑
i=0

bw′,iT(ts′)iCtw′ + h′′m

where bw′,i ∈ A and h′′m ∈ H′. Furthermore, h′m = h′′m.

Proof. — The first two equalities come from a straightforward induction.
It is clear that h0 = h′0 = Cw. Even though it is not necessary, let us do
the case m = 1 to show how the multiplication process works. We have

Ts′Cw =
∑

w′∈W ′

aw′Cw′ for some aw′ ∈ A.
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Thus we obtain (using the previous lemma)

Ts′tCw′ = Ts′Ctw′ − v−L(t)
∑

w′∈W ′

aw′Cw′

and

Tts′Cw′ =
∑

w′∈W ′

aw′Ctw′ − v−L(t)
∑

w′∈W ′

aw′Cw′ .

It follows that
h′1 = −v−L(t)

∑
w′∈W ′

aw′Cw′ = h′′1 .

Now, by induction, one can see that

h′m = −v−L(t)Ts′h
′
m−1 ∈ H′ and h′′m = −vL(t)Ts′h

′′
m−1 ∈ H′.

The result follows. �

Proposition 4.6. — The submodule

M := 〈TxCu | u ∈ U, x ∈ Xu〉A ⊆ H

is a left ideal.

Proof. — Let z ∈W , u ∈ U and x ∈ Xu. We need to show that TzTxCu ∈
M. Since TzTx is an A-linear combination of Ty (y ∈ W ), it is enough to
show that TyCu ∈M for all y ∈W and u ∈ U .
We proceed by induction on `(y). If `(y) = 0, then the result is clear.
Assume that `(y) > 0. We may assume that y /∈ Xu. Let w′ ∈ W ′ such
that u = tw′. Recall that Xu = (R{t} ∩XS′)t.
Suppose that yt < y, then we have

TyCtw′ = TytTtCtw′ = vL(t)TytCtw′ ∈M

by induction.
Suppose that yt > y. Since yt ∈ R{t} and yt /∈ R{t} ∩ XS′ , there exists
s′ ∈ S′ such that (yt)s′ < yt. Let 2n be the order of ts′ (it has to be finite
in that case). One can see that there exists y0 (with `(y0) < `(y)) such that
yt = y0(ts′)n.
Using Lemma 4.3 and the relation Ct = Tt + v−L(t)Te we see that

Ctw′ = CtCw′ = TtCw′ + v−L(t)Cw′ .

Since s′ ∈ S′ and w′ ∈W ′ we have

Ts′Cw =
∑

wi∈W ′

awiCwi for some awi ∈ A.
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Thus we get

TyCtw′ = TytCw′ + v−L(t)TyCw′

= Ty0T(ts′)nCw′ + v−L(t)Ty0T(s′t)n−1s′Cw′

= Ty0

(
T(ts′)n−1Tt

∑
wi∈W ′

awiCwi + v−L(t)T(s′t)n−1

∑
wi∈W ′

awiCwi

)
=
∑

awiTy0.(ts′)n−1Ctwi

+ v−L(t)Ty0

∑
awi

(
T(s′t)n−1Cwi

− T(ts′)n−1Cwi

)
.

By induction we see that∑
awi

Ty0T(ts′)n−1Ctwi ∈M.

Lemma 4.5 implies that

T(s′t)n−1Cw − T(ts′)n−1Cw

is anA-linear combination of terms of the form T(s′t)ms′Ctw′ and T(ts′)mCtw′ ,
for some tw′ ∈ U and m 6 n − 2 (it is 0 if n = 1). Thus it follows by in-
duction that

Ty0

∑
awi

(
T(s′t)n−1Cwi − T(ts′)n−1Cwi

)
∈M

as required. �

Proposition 4.7. — For all u ∈ U , u1 < u and y ∈ Xu we have

Pu1,uTyTu1 is an A<0-linear combination of Tz.

Proof. — Let u = tw′ ∈ U , u1 < u and y ∈ Xu. One can see that we
have either u1 ∈ W ′ (then u1 6 w′) or there exists w ∈ W ′ such that
u1 = tw and w < w′.
Assume that u1 ∈ W ′. Then tu1 > u1 and we have (using ([14, Theo-
rem 6.6])

Pu1,u = Pu1,tw′ = v−L(t)Ptu1,tw′ ∈ v−L(t)A60.

Furthermore, the degree of the polynomials occurring in the decomposition
of TyTu1 in the standard basis is at most N . Indeed, let y′ ∈ XS′ and v ∈W ′

be such that y = y′v. Then we have

TyTu1 = Ty′TvTu1

= Ty′

∑
u′∈W ′

fv,u1,u′Tu′

=
∑

u′∈W ′

fv,u1,u′Ty′u′
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and since W ′ is bounded by N , the degree of fv,u1,u′ is less than or equal
to N . Thus, since L(t) > N , we get the result in that case.
Assume that u1 = tw (w ∈W ′). Then, since y ∈ (R{t}∩XS′)t, we see that
`(yu1) = `(y) + `(u1) and TyTu1 = Tyu1 . The result follows. �

We are now ready to prove Theorem 4.1. Conditions I4 and I5 follow
respectively from Proposition 4.6 and 4.7. Applying Theorem 3.2 yields
that

{xu| u ∈ U, x ∈ Xu} = {w ∈W | w = yw′, y ∈ R{t} ∩XS′ , w
′ ∈W ′}

is a left ideal of W .

Example 4.8. — Let W be of type G̃2 with presentation as follows

W := 〈s1, s2, s3 | (s1s2)6 = 1, (s2s3)3 = 1, (s1s3)2 = 1〉

and let L be a weight function on W . The longest element of the subgroup
W ′ generated by s2, s3 is w0 = s2s3s2 and L(w0) = 3L(s2). One can easily
check that 3L(s2) is a bound for W ′, thus if L(s1) > 3L(s2) we can apply
Theorem 1.1. We obtain that the following sets (which are the cells of W ′):

{e} ∪ {s2, s3s2} ∪ {s3, s2s3} ∪ {w0} (left cells)

{e} ∪ {s2, s3, s3s2, s2s3} ∪ {w0} (two-sided cells).

are left cells (resp. two-sided cells) of W .

5. Miscellaneous

In this section (W,S) denotes an arbitrary Coxeter system and L a pos-
itive weight function on W . We give a number of lemmas which will be
needed later on.

Lemma 5.1. — Let S′ ⊆ S be such that
(1) for all s′1, s

′
2 ∈ S′, we have L(s′1) = L(s′2),

(2) for all t ∈ S − S′ and s′ ∈ S′ we have L(t) > L(s′).
Let y, w ∈ W and s′ ∈ S′ be such that s′y < y < w < s′w. Then if
Ms′

y,w 6= 0, we have either L(w) ⊆ L(y) or there exists s ∈ S′ such that
w = sy, in which case Ms′

y,w = 1.

Proof. — We proceed by induction on `(w) − `(y). Assume first that
`(w) − `(y) = 1. Since s′y < y and s′w > w one can see that there exist
s ∈ S such that s 6= s′ and w = sy. In that case we have

Ms′

y,w =

{
0, if L(s) > L(s′),

1, if L(s) = L(s′).
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Thus if Ms′

z,w 6= 0 we must have s ∈ S′.
Assume that `(w) − `(y) > 1 and that L(w) * L(y). Let s ∈ S be such
that s ∈ L(w) and s /∈ L(y). We have

Ms′

y,w +
∑

z;y<z<w,s′z<z

Py,zM
s′

z,w − vs′Py,w ∈ A<0.

Thus in order to show that Ms′

y,w = 0 it is enough to show that∑
z;y<z<w,s′z<z

Py,zM
s′

z,w − vs′Py,w ∈ A<0.

Let z ∈ W be such that Ms′

z,w 6= 0. By induction we have either Ms′

z,w = 1
or L(w) ⊆ L(z). In the first case we have Py,zM

s′

z,w ∈ A<0. Assume that
we are in the second case (then s ∈ L(z)). By ([14, proof of Theorem 6.6])
we know that

Py,z = v−1
s Psy,z ∈ A60.

Furthermore the degree in v of Ms′

z,w is at most L(s′) − 1 ([14, Proposi-
tion 6.4]). Since s′ ∈ S′ we have L(s) > L(s′) and

Py,zM
s′

z,w ∈ A<0.

Similarly vs′Py,w ∈ A<0 (since `(w) − `(y) > 1). Thus if L(w) * L(y) we
must have Ms′

y,w = 0, as required. �

Lemma 5.2. — Let B ⊆ W be a left ideal of W . Let s ∈ S and B′
s

(resp. Bs) be the subset of B which consists of all w ∈ B such that ws > w

(resp. ws < w). Assume that there exists a left ideal A of W such that, for
all w′ ∈ B′

s we have

Cw′Cs = Cw′s +
∑
z∈A

ACz.

Then A ∪Bs ∪B′
ss is a left ideal of W .

Proof. — Let w ∈ A ∪Bs ∪B′
ss. Let y ∈ W be such that y 6L w. We

need to show that y ∈ A ∪Bs ∪B′
ss.

If w ∈ A then y ∈ A, since A is a left ideal.
If w ∈ Bs then y ∈ B. Note that since

y 6L w =⇒ R(w) ⊆ R(y),

we have s ∈ R(y) and y ∈ Bs. This shows that Bs is a left ideal.
Finally, assume that w ∈ B′

ss and let w′ = ws ∈ B′
s. We may assume that
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there exists t ∈ S such that Cy appears with a non-zero coefficient in the
expression of CtCw in the Kazhdan-Lusztig basis. We have

CtCw = CtCw′s

= Ct

(
Cw′Cs +

∑
z∈A

ACz

)

=

(∑
z∈B

ACz

)
Cs +

∑
z∈A

ACz

=
∑

z∈B′
ss

ACz +
∑

z∈Bs

ACz +
∑
z∈A

ACz

Thus we see that y ∈ A ∪Bs ∪B′
ss as desired. �

Lemma 5.3. — Let T be a union of left cells which is stable by taking
the inverse. Let T = ∪ Ti (1 6 i 6 N) be the decomposition of T into left
cells. Assume that for all i, j ∈ {1, ..., N} we have

(∗) T−1
i ∩ Tj 6= ∅

Then T is included in a two-sided cell.

Proof. — Let y, w ∈ T and i, j ∈ {1, ..., N} be such that y ∈ Ti and
w ∈ Tj . Using (∗), there exist y1, y2 ∈ Ti such that y−1

1 ∈ Ti and y−1
2 ∈ Tj .

We have
y ∼L y1 ∼L y2 =⇒ y ∼L y−1

1 ∼R y−1
2 ∼L w

as required. �

6. Decomposition of G̃2 in the asymptotic case

Let W be an affine Weyl group of type G̃2 with diagram and weight
function given by

a b b

s1 s2 s3

where a, b are positive integers.
The aim of this section is to find the decomposition of W into left cells

and two-sided cells for any weight function L such that a/b > 4. Further-
more we will determine the partial left (resp. two-sided) order on the left
(resp. two-sided) cells (see Section 6.4). We fix such a weight function L.
Throughout this section, we keep this setting.
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In Figure 6.1, we present a partition of W using the geometric realization
as described in Section 2.2, where the pieces are formed by the alcoves lying
in the same connected component after removing the thick lines. We have

A0

A1A6

A6

A5

A5

A4

A4

A3

A3

A2

A2A1

C4

C3

C2

C1

C6

C5

B3

B2

B1B6

B5

B4

E1
E2

D3

D2 D1

F

Figure 6.1. Decomposition of G̃2 into left cells in the case a > 4b

Theorem 6.1. — The partition of W described in Figure 6.1 coincides
with the partition of W into left cells.

Using the same methods as in [7, Section 6], one can show that each of
the pieces is included in a left cell (with respect to L). Thus in order to
prove that each of the pieces is a left cell it is enough to show that each of
them is included in a union of left cells.
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We now consider the union of all subsets of W whose name contains a
fixed capital letter; we denote this union by that capital letter. For instance

A =
(

6
∪

i=1
Ai

)⋃(
6
∪

i=1
A′

i

)
.

We have

Theorem 6.2. — The decomposition of W into two-sided cells is as
follows

W = A ∪B ∪ C ∪D ∪ E ∪ F ∪ {e}.

The proof of these theorems will be given in the next sections. For a
start, we already know that (see [9, §4])

• A is a two sided cell;
• Ai and A′

i are left cells for all 1 6 i 6 6;
• Ai and A′

i are left ideals for all 1 6 i 6 6.

Remark 6.3. — In this section we need to compute some Kazhdan-
Lusztig polynomials Px,y (x, y ∈ W ) for a whole class of weight functions.
Methods for dealing with this problem are presented in [7, Proposition 3.2
and §6]. In particular, this involved some computations with GAP ([15]).

We now recall some notation. For any subset J ⊆ {s1, s2, s3}, let
(1) RJ := {w ∈W | J ⊆ R(w)};
(2) WJ be the subgroup of W generated by J ;
(3) XJ := {w ∈W | w has minimal length in wWJ}.

We refer to [8] for details in the computations.

6.1. The sets Ci

In this section we want to prove that Ci (for all 1 6 i 6 6) is a left cell
and that C = ∪Ci is a two-sided cell.

For 1 6 i 6 6, let
(1) ui ∈ Ci be the element of minimal length in Ci;
(2) vi ∈ Ai be the element of minimal length in Ai;
(3) v′i ∈ A′

i be the element of minimal length in A′
i.

For instance, we have

u1 = s1s2s1s2s1;

v1 = s1s2s1s2s1s2;

v′1 = s2s1s2s1s2s3s1s2s1s2s1.
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We set U := {ui, vi, v
′
i | 1 6 i 6 6}, Xvi = Xv′

i
= X{s1,s2} and

Xui = {z ∈W | zui ∈ Ci}

for all 1 6 i 6 6. We want to apply Corollary 3.3. One can check that
conditions I1–I3 of Theorem 3.2 hold. We now have a look at condition I4.

Lemma 6.4. — The submodule

M := 〈TxCu | u ∈ U, x ∈ Xu〉A ⊆ H

is a left ideal.

Proof. — In [9, Lemma 5.2], it has been shown that

〈TxCvi | x ∈ X{s1,s2}〉A and 〈TxCv′
i
| x ∈ X{s1,s2}〉A

are left ideals of H, for all 1 6 i 6 6. Thus, in order to show that M is a
left ideal of H, it is enough to prove that TxCui

∈M for all 1 6 i 6 6 and
all x ∈W . We proceed by induction on `(x). If `(x) = 0 it’s clear. Assume
that `(x) > 0. We may assume that x /∈ Xui . Then, one can see that we
have either x = x0s2 (and `(x) = `(x0) + 1) or x = x1s2s1s2s1s2s3 (and
`(x) = `(x1) + 6). Now, doing some explicit computations, one can show
that Ts2Cui is an A-linear combination of Cu with u ∈ U . For example, we
have

Ts2Cu1 = Cv1 − v−L(s2)Cu1

and
Ts2Cu5 = Cv5 − v−L(s2)Cu5 + Cv1 .

Similarly, one can show that Ts2s1s2s1s2s3Cui
is an A-linear combination of

terms of the form TzCu where u ∈ U , z ∈ Xu and `(z) < `(s2s1s2s1s2s3).
For example we have

Ts2s1s2s1s2s3Cu1 = Cv′1
+ATs1s2s1s2s3Cu1 +ATs2s1s2s3Cu1 +ATs1s2s3Cu1

+ATs2s3Cu1 +ATs3Cu1 +ACu1 +ACv1 .

Thus by induction, we obtain that TxCui ∈M as required. �

We now have a look at condition I5. Let u ∈ U , u′ < u and y ∈ Xu. We
need to show that

Pu′,uTyTu′ is an A<0-linear combination of Tz.

For u = vi or u = v′i, it has been proved in [9, Lemma 5.1]. In order to prove
it for u = ui we proceed as follows. We determine an upper bound for the
degree of the polynomials occurring in the expression of TyTu′ (where y ∈
Ci, u′ < ui) in the standard basis using either [9, Theorem 2.1] or explicit
computations. Then we compute the polynomials Pu′,u (see Remark 6.3)
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and we can check that the condition is satisfied for all weight functions
such that L(s1) > 4L(s2).

We can now apply Corollary 3.3. We need to find the equivalence classes
on U with respect to �. Using the fact that 〈TxCvi | x ∈ X{s1,s2}〉A and
〈TxCv′

i
| x ∈ X{s1,s2}〉A are left ideals of H for all 1 6 i 6 6 and the

relations computed in the previous proof, one can check that

{{ui}{vi}, {v′i} | 1 6 i 6 6}

is the decomposition of U into equivalence classes. Hence by Corollary 3.3,
the set Xui

ui = Ci is a union of left cells for all 1 6 i 6 6. Since Ci is
included in a left cell, we obtain that each of the Ci’s is a left cell.
More precisely, if L is a weight function such that a/b > 4, the following
sets are left ideals of W

Ci ∪Ai ∪A′
i for i = 1, 2, 3, 6

C4 ∪A4 ∪A′
4 ∪A2,

C5 ∪A5 ∪A′
5 ∪A1.

Proposition 6.5. — The set C is a two-sided cell.

Proof. — Applying Theorem 3.2 to the set U yields that A ∪ C is a left
ideal of W . One can check that A ∪C is stable by taking the inverse, thus
it is a two-sided ideal and A ∪ C is a union of two-sided cells. Since A is a
two sided cell (see [9] and the references there), we see that C is a union of
two-sided cells. Now one can check that C = ∪Ci satisfy the requirement
of Lemma 5.3 thus C is included in a two-sided cell. It follows that C is a
two-sided cell. �

6.2. The sets Bi

We want to prove that Bi (for all 1 6 i 6 6) is a left cell. To this end,
since Bi is included in a left cell, it is enough to show that Bi is a union of
left cells. We also show that B is a two-sided cell.

Claim 6.6. — The set B1 is a left cell.

Proof. — Set u = s1s3s2s1 and

Xu1 = {z ∈W | zs1s3s2s1 ∈ B1}.
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Recall that

u1 = s1s2s1s2s1,

v1 = s1s2s1s2s1s2,

v′1 = s1s2s1s2s1s2s3s2s1s2s1,

u2 = s1s2s1s2s1s3s2s1,

v2 = s2s1s2s1s2s1s3s2s1,

v′2 = s2s1s2s1s2s3s1s2s1s2s1s3s2s1

v3 = s2s1s2s1s2s1s3,

and

Xui = {z ∈W | zui ∈ Ci},
Xvi = Xv′

i
= X{s1,s2} for 1 6 i 6 6.

Using similar arguments as in Lemma 6.4 and the results in Section 6.1, one
can check that we can apply Theorem 3.2 to U := {u, u1, v1, v

′
1, u2, v2, v

′
2, v3}.

We obtain that

{xu | u ∈ U, x ∈ Xu} = A2 ∪A′
2 ∪ C2 ∪B1 ∪A1 ∪A′

1 ∪ C1 ∪A3

is a left ideal. Since A1, A′
i and Ci are left cells for all 1 6 i 6 6 it follows

that B1 is a left cell. �

Claim 6.7. — B2 is a left cell.

Proof. — The set R{s1,s3} is a left ideal of W (see Example 2.3). Since
we have

R{s1,s3} = B2 ∪A3 ∪A′
3 ∪A2 ∪ C3

one can see that B2 is a left cell. �

Claim 6.8. — The set B3 is a left cell.

Proof. — Let v = s1s3s2s1s2s3 and

Xv := {z ∈W |zv ∈ B3} Yv := {y ∈ Xv|`(ys2s1s2) = `(y)− 3}.

We want to apply Theorem 3.2 to the set U = {v, u4, v4, v
′
4, v3, v2, v5}

and the corresponding Xu. Arguing as in Section 6.1, one can show that
conditions I1–I4 hold. However, condition I5 does not hold if (and only if)
v′ = s1s2s1s2s3 < v and y ∈ Yv. Indeed, let y ∈ Yv and y0 = ys2s1s2, then
we have Pv′,v = v−L(s3) and

Ty0Ts2s1s2Tv′ = Ty0

(
Ts1s2s1s2s1s3 + (vL(s2) − v−L(s2))Ts1s2s1s2s1s2s3

)
= Ty0s1s2s1s2s1s3 + (vL(s2) − v−L(s2))Ty0s1s2s1s2s1s2s3
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However, we can certainly construct the elements C̃xu (see the proof of
Proposition 3.8) such that

C̃xu = C̃xu for all u ∈ U and x ∈ Xu.

Using Section 6.1 and doing some computations, one can check that
(1) C̃xu = Cxu for all u ∈ U − {v} and x ∈ Xu.
(2) C̃yv = Cyv if y ∈ Xv − Yv.

Let y ∈ Yv and y0 = ys2s1s2. We have

C̃yv = TyCv +
∑

u∈U,x∈Xu

xu@yv

p∗xu,yvTxCu

= TyCv +
∑

x<y,x∈Xv

p∗xv,yvTxCv +
∑

u∈U,x∈Xu

u 6=v

p∗xu,yvTxCu

= TyCv +
∑

x<y,x∈Xv

p∗xv,yvTxCv mod H<0

= TyCv mod H<0

= TyTv + Ty(Pv′,vTv′) mod H<0

= TyTv + Ty0Ts1s2s1s2s1s2s3 mod H<0

= Tyv + Ty0s1s2s1s2s1s2s3 mod H<0

whereH<0 = ⊕w∈WA<0Tw. Thus since C̃yv is stable under the involution ¯,
it follows that

C̃yv = Cyv + Cy0s1s2s1s2s1s2s3 .

Furthermore, since y0s1s2s1s2s1s2s3 ∈ A3 we obtain that

〈TxCu|u ∈ U, x ∈ Xu〉A = 〈Cxu|u ∈ U, x ∈ Xu〉A
is a left ideal of H. We get that

B3 ∪ C4 ∪A4 ∪A′
4 ∪A3 ∪A2 ∪A5

is a left ideal of W . It follows that B3 is a left cell. �

Claim 6.9. — The set B4 is a left cell.

Proof. — The set R{s2,s3} is a left ideal of W . Furthermore, we have

R{s2,s3} = {s2s3s2} ∪B4 ∪A4 ∪A5,

it follows that B4 is a left cell. �

Remark 6.10. — We have seen in Example 4.8 that W −W{s2,s3} is a
left ideal. Thus

R{s2,s3} ∩ (W −W{s2,s3}) = B4 ∪A4 ∪A5

is a left ideal of W .
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Claim 6.11. — B5 is a left cell.

Proof. — Let w ∈ R{s1,s3} and let w′ = ws1s3. We have ws2 > w and

CwCs2 = Cws2 +
∑

z∈W,zs2<z

µs2,r
z,w Cz.

Applying Lemma 5.1 (in its right version), if Ms2,r
z,w 6= 0 then we have either

{s1, s2, s3} ⊆ R(z) which is impossible or there exists w′′ ∈W such that

w = w′′s2s3 and z = w′′s2.

Since w = w′′s2s3 = w′s1s3 we must have w ∈ A3, which, in turn, implies
that z ∈ A1 (recall that A1 is a left ideal). Thus applying Lemma 5.2 to
A = A1 and B = R{s1,s3} yields that

R{s1,s3}s2 ∪A1 = A1 ∪A5 ∪A′
5 ∪A6 ∪ C5 ∪B5

is a left ideal of W . In particular B5 is a left cell. �

Claim 6.12. — The set B6 is a left cell.

Proof. — Applying Lemma 5.2 (in a similar way as in 6.11) to

B = A2 ∪A′
2 ∪ C2 ∪B1 ∪A1 ∪A′

1 ∪ C1 ∪A3

and A = A1 we obtain that

A1 ∪A′
1 ∪ C1 ∪A6 ∪A′

6 ∪ C6 ∪A5 ∪B6

is a left ideal. Thus B6 is a left cell. In fact, since the elements of C1 and
A′

1 do not contain s1 in their right descent set, we see that

A1 ∪A6 ∪A′
6 ∪ C6 ∪A5 ∪B6

is a left ideal of W . �

Proposition 6.13. — The set B = ∪Bi is a two-sided cell.

Proof. — By the previous proofs, we see that A∪C∪B is left ideal of W .
Arguing as in the proof of Proposition 6.5, we obtain that B is a two-sided
cell. �

6.3. Finite cells

We already know that E1, E2, F and {e} are left cells and that E1 ∪E2,
F and {e} are two-sided cells (see Example 4.8). Thus we see that

W −A ∪B ∪ C ∪ E ∪ F ∪ {e} = D = D1 ∪D2 ∪D3
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is a union of left and two-sided cells. For 1 6 i 6 3 we have D∩R{si} = Di

thus Di is a union of left cells. Since Di is included in a left cell it follows
that Di is a left cell. Using Lemma 5.3, one can easily check that

D1 ∪D2 ∪D3

is a two-sided cell.

6.4. Left and two-sided order

Theorem 6.14. — The partial order induced by 6L on the left cells
can be described by the following Hasse diagram

A1 A1 A2 A2 A3 A3 A4 A4 A5 A5 A6 A6

C1 C2 C3 C4 C5 C6

B1 B2 B3 B4 B5 B6

D1 D3 D2

F

E1 E2

e

A1 A1

C1

Proof. — Most of the relations can be deduced using the fact that for
s ∈ S and w ∈W , if sw > w then sw 6L w. For instance, for all 1 6 i 6 6
we have Ai 6L Ci and A′

i 6L Ci.
Some of the relations require some explicit computations, we refer to [8]
for details. The fact that there is no other links comes from the last two
sections, where we have determined many left ideals of W . Recall that in
[9], it is shown that Ai and A′

i are left ideals of W . �

Theorem 6.15. — Let T = D or T = F = {s2s3s2}. Then the partial
order induced by 6LR on the two-sided cells is as follows

A 6 C 6 B 6 T 6 E 6 {e}

and D and F are not comparable.

ANNALES DE L’INSTITUT FOURIER



KAZHDAN-LUSZTIG CELLS 1411

Proof. — This is easily checked. �

Using the explicit decomposition of G̃2 in our case, we can check some
of Lusztig’s conjectures (see [14, Chap. 14]). For instance

P14. For any z ∈W , we have z ∼LR z−1

is certainly true. The following statement can be easily deduced from P4
and P9

x 6L y and x ∼LR y =⇒ x ∼L y.

This can be easily checked from the partial left order on the left cells.
Indeed, there is no relations between two left cells lying in the same two-
sided cell.
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