[Diviseurs linéairement libres et le théorème de comparaison logarithmique global]
Une hypersurface complexe de est appelée un diviseur linéairement libre (ou DLL) si son module de champs de vecteur logarithmiques a une base globale formée de champs de vecteurs linéaires. Nous classifions tous les DLL pour au plus égal à .
Par analogie avec le théorème de comparaison de Grothendieck, on dit que le théorème de comparaison logarithmique global (ou TCLG) est vrai pour si le complexe des formes différentielles logarithmiques globales permet de calculer la cohomologie de à coefficients complexes. Nous mettons en évidence un critère général pour qu’un DLL ait la propriété TCLG, et nous démontrons que ce critère s’applique lorsque l’algèbre de Lie des champs de vecteurs logarithmiques linéaires est réductive. Pour inférieur ou égal à , nous montrons que le TCLG est vrai pour tous les DLL.
Nous montrons que les DLL qui apparaissent naturellement comme discriminants dans les espaces de représentations de carquois pour des racines de Schur réelles satisfont au TCLG. Comme corollaire nous obtenons une démonstration topologique d’un résultat de V. Kac sur le nombre de composantes irréductibles de tels discriminants.
A complex hypersurface in is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for at most .
By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for if the complex of global logarithmic differential forms computes the complex cohomology of . We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the Lie algebra of linear logarithmic vector fields is reductive. For at most , we show that the GLCT holds for all LFDs.
We show that LFDs arising naturally as discriminants in quiver representation spaces (of real Schur roots) fulfill the GLCT. As a by-product we obtain a topological proof of a theorem of V. Kac on the number of irreducible components of such discriminants.
Keywords: Free divisor, prehomogeneous vector space, De Rham cohomology, logarithmic comparison theorem, Lie algebra cohomology, quiver representation
Mot clés : diviseur linéairement libre, espace vectorielle préhomogène, cohomologie de De Rham, théorème de comparaison logarithmique, cohomologie des algèbres de Lie, représentation des quivers
Granger, Michel 1 ; Mond, David 2 ; Nieto-Reyes, Alicia 3 ; Schulze, Mathias 4
@article{AIF_2009__59_2_811_0, author = {Granger, Michel and Mond, David and Nieto-Reyes, Alicia and Schulze, Mathias}, title = {Linear free divisors and the global logarithmic comparison theorem}, journal = {Annales de l'Institut Fourier}, pages = {811--850}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {2}, year = {2009}, doi = {10.5802/aif.2448}, mrnumber = {2521436}, zbl = {1163.32014}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2448/} }
TY - JOUR AU - Granger, Michel AU - Mond, David AU - Nieto-Reyes, Alicia AU - Schulze, Mathias TI - Linear free divisors and the global logarithmic comparison theorem JO - Annales de l'Institut Fourier PY - 2009 SP - 811 EP - 850 VL - 59 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2448/ DO - 10.5802/aif.2448 LA - en ID - AIF_2009__59_2_811_0 ER -
%0 Journal Article %A Granger, Michel %A Mond, David %A Nieto-Reyes, Alicia %A Schulze, Mathias %T Linear free divisors and the global logarithmic comparison theorem %J Annales de l'Institut Fourier %D 2009 %P 811-850 %V 59 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2448/ %R 10.5802/aif.2448 %G en %F AIF_2009__59_2_811_0
Granger, Michel; Mond, David; Nieto-Reyes, Alicia; Schulze, Mathias. Linear free divisors and the global logarithmic comparison theorem. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 811-850. doi : 10.5802/aif.2448. https://aif.centre-mersenne.org/articles/10.5802/aif.2448/
[1] Ordinary differential equations and smooth dynamical systems, Springer-Verlag, Berlin, 1997 Translated from the 1985 Russian original by E. R. Dawson and D. O’Shea, Third printing of the 1988 translation [Dynamical systems. I, Encyclopaedia Math. Sci., 1, Springer, Berlin, 1988; MR0970793 (89g:58060)] | MR | Zbl
[2] On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291 | DOI | EuDML | MR | Zbl
[3] Linear free divisors and quiver representations, Singularities and computer algebra (London Math. Soc. Lecture Note Ser.), Volume 324, Cambridge Univ. Press, Cambridge, 2006, pp. 41-77 | MR | Zbl
[4] The module for locally quasi-homogeneous free divisors, Compositio Math., Volume 134 (2002) no. 1, pp. 59-74 | DOI | MR | Zbl
[5] Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv., Volume 77 (2002) no. 1, pp. 24-38 | DOI | MR | Zbl
[6] Logarithmic comparison theorem and some Euler homogeneous free divisors, Proc. Amer. Math. Soc., Volume 133 (2005) no. 5, p. 1417-1422 (electronic) | DOI | MR | Zbl
[7] Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc., Volume 348 (1996) no. 8, pp. 3037-3049 | DOI | MR | Zbl
[8] The incidence class and the hierarchy of orbits (2007) (http://arxiv.org/abs/0705.3834)
[9] Unzerlegbare Darstellungen. I, Manuscripta Math., Volume 6 (1972), p. 71-103; correction, ibid. 6 (1972), 309 | DOI | EuDML | MR | Zbl
[10] Linear free divisors and the global logarithmic comparison theorem (2006) (http://arxiv.org/abs/math/0607045)
[11] On the formal structure of logarithmic vector fields, Compos. Math., Volume 142 (2006) no. 3, pp. 765-778 | DOI | MR | Zbl
[12] On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, pp. 95-103 | DOI | Numdam | MR | Zbl
[13] The cancellation property for direct products of analytic space germs, Math. Ann., Volume 286 (1990) no. 1-3, pp. 209-223 | DOI | MR | Zbl
[14] Linear algebraic groups, Springer-Verlag, New York, 1975 (Graduate Texts in Mathematics, No. 21) | MR | Zbl
[15] Lie algebras, Dover Publications Inc., New York, 1979 (Republication of the 1962 original) | MR
[16] Infinite root systems, representations of graphs and invariant theory. II, J. Algebra, Volume 78 (1982) no. 1, pp. 141-162 | DOI | MR | Zbl
[17] Geometry of representations of quivers, Representations of algebras (Durham, 1985) (London Math. Soc. Lecture Note Ser.), Volume 116, Cambridge Univ. Press, Cambridge, 1986, pp. 109-145 | MR | Zbl
[18] M.Phil Thesis, University of Warwick, Coventry, England (2005) (Masters thesis)
[19] Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 (Translated from the Russian and with a preface by D. A. Leites) | MR | Zbl
[20] Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992 | MR | Zbl
[21] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Volume 14 (1971), pp. 123-142 | DOI | MR | Zbl
[22] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl
[23] A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., Volume 65 (1977), pp. 1-155 | MR | Zbl
[24] Semi-invariants of quivers, J. London Math. Soc. (2), Volume 43 (1991) no. 3, pp. 385-395 | DOI | MR | Zbl
[25] Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001 (Translated from the French by G. A. Jones, Reprint of the 1987 edition) | MR | Zbl
[26] Forms with logarithmic pole and the filtration by the order of the pole, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), pp. 673-685 | MR | Zbl
[27] On meromorphic functions defined by a differential system of order 1, Bull. Soc. Math. France, Volume 132 (2004) no. 4, pp. 591-612 | Numdam | MR | Zbl
[28] Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compos. Math., Volume 141 (2005) no. 1, pp. 121-145 | DOI | MR | Zbl
[29] De Rham cohomology of logarithmic forms on arrangements of hyperplanes, Trans. Amer. Math. Soc., Volume 349 (1997) no. 4, pp. 1653-1662 | DOI | MR | Zbl
Cité par Sources :