Pour une transformation continue sur un graphe topologique contenant une boucle , il est possible de définir le degré (par rapport à la boucle ) et, quand la transformation est de degré , des nombres de rotation. Nous étudions l’ensemble de rotation de ces transformations et les périodes des points périodiques ayant un nombre de rotation donné. Nous montrons que, si le graphe a une unique boucle , alors l’ensemble des nombres de rotation des points de a des propriétés similaires à celles de l’ensemble de rotation d’une transformation du cercle ; en particulier, c’est un intervalle compact et pour tout rationnel dans cet intervalle il existe un point périodique de nombre de rotation .
Pour une classe particulière de transformations appelées transformations peignées, l’ensemble de rotation possède les mêmes bonnes propriétés que celui des transformations continues de degré 1 sur le cercle.
For a continuous map on a topological graph containing a loop it is possible to define the degree (with respect to the loop ) and, for a map of degree , rotation numbers. We study the rotation set of these maps and the periods of periodic points having a given rotation number. We show that, if the graph has a single loop then the set of rotation numbers of points in has some properties similar to the rotation set of a circle map; in particular it is a compact interval and for every rational in this interval there exists a periodic point of rotation number .
For a special class of maps called combed maps, the rotation set displays the same nice properties as the continuous degree one circle maps.
Keywords: Rotation numbers, graph maps, sets of periods
Mot clés : nombres de rotation, transformations de graphes, ensembles de périodes
Alsedà, Lluís 1 ; Ruette, Sylvie 2
@article{AIF_2008__58_4_1233_0, author = {Alsed\`a, Llu{\'\i}s and Ruette, Sylvie}, title = {Rotation sets for graph maps of degree~1}, journal = {Annales de l'Institut Fourier}, pages = {1233--1294}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {4}, year = {2008}, doi = {10.5802/aif.2384}, mrnumber = {2427960}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2384/} }
TY - JOUR AU - Alsedà, Lluís AU - Ruette, Sylvie TI - Rotation sets for graph maps of degree 1 JO - Annales de l'Institut Fourier PY - 2008 SP - 1233 EP - 1294 VL - 58 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2384/ DO - 10.5802/aif.2384 LA - en ID - AIF_2008__58_4_1233_0 ER -
%0 Journal Article %A Alsedà, Lluís %A Ruette, Sylvie %T Rotation sets for graph maps of degree 1 %J Annales de l'Institut Fourier %D 2008 %P 1233-1294 %V 58 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2384/ %R 10.5802/aif.2384 %G en %F AIF_2008__58_4_1233_0
Alsedà, Lluís; Ruette, Sylvie. Rotation sets for graph maps of degree 1. Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1233-1294. doi : 10.5802/aif.2384. https://aif.centre-mersenne.org/articles/10.5802/aif.2384/
[1] Sets of periods for piecewise monotone tree maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 13 (2003) no. 2, pp. 311-341 | DOI | MR | Zbl
[2] On the preservation of combinatorial types for maps on trees, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 7, pp. 2375-2398 | DOI | Numdam | MR | Zbl
[3] Periodic behavior on trees, Ergodic Theory Dynam. Systems, Volume 25 (2005) no. 5, pp. 1373-1400 | DOI | MR | Zbl
[4] Minimal dynamics for tree maps, Discrete Contin. Dyn. Syst. Ser. A, Volume 3 (2006) no. 20, pp. 511-541 | MR | Zbl
[5] Periodic orbits of maps of , Trans. Amer. Math. Soc., Volume 313 (1989) no. 2, pp. 475-538 | DOI | MR | Zbl
[6] Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co. Inc., River Edge, NJ, 1993 | MR | Zbl
[7] Minimizing topological entropy for continuous maps on graphs, Ergodic Theory Dynam. Systems, Volume 20 (2000) no. 6, pp. 1559-1576 | DOI | MR | Zbl
[8] An extension of Sharkovskiĭ’s theorem to the , Ergodic Theory Dynam. Systems, Volume 11 (1991) no. 2, pp. 249-271 | DOI | Zbl
[9] Periods of maps on trees with all branching points fixed, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 2, pp. 239-246 | DOI | MR | Zbl
[10] Vertex maps for trees: algebra and periods of periodic orbits, Discrete Contin. Dyn. Syst., Volume 14 (2006) no. 3, pp. 399-408 | DOI | MR | Zbl
[11] Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc., Volume 72 (1978) no. 3, pp. 576-580 | DOI | MR | Zbl
[12] Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems (Lecture Notes in Mathematics, no. 819), Springer-Verlag, 1980, pp. 18-34 | MR | Zbl
[13] Rotation sets are closed, Math. Proc. Cambridge Philos. Soc., Volume 89 (1981) no. 1, pp. 107-111 | DOI | MR | Zbl
[14] On the set of periods for maps, Trans. Amer. Math. Soc., Volume 347 (1995) no. 12, pp. 4899-4942 | DOI | MR | Zbl
[15] Periods for continuous self-maps of the figure-eight space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 13 (2003) no. 7, pp. 1743-1754 Dynamical systems and functional equations (Murcia, 2000) | DOI | MR | Zbl
[16] Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems, Volume 2 (1982) no. 2, p. 221-227 (1983) | MR | Zbl
[17] Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), Volume 34 (1986) no. 2, pp. 360-368 | DOI | MR | Zbl
[18] Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž., Volume 16 (1964), pp. 61-71 (in Russian) | MR
[19] Coexistence of cycles of a continuous map of the line into itself, Thirty years after Sharkovskiĭ’s theorem: new perspectives (Murcia, 1994) (World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc.), Volume 8, World Sci. Publ., River Edge, NJ, 1995, pp. 1-11 Translated by J. Tolosa, Reprint of the paper reviewed in MR1361914 (96j:58058) | Zbl
[20] A geometric introduction to topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972 | MR | Zbl
[21] -limit set of a tree map, Northeast. Math. J., Volume 17 (2001) no. 3, pp. 333-339 | MR | Zbl
[22] Rotation sets for subshifts of finite type, Fund. Math., Volume 146 (1995) no. 2, pp. 189-201 | EuDML | MR | Zbl
Cité par Sources :