Dans cet article, les résultats sur le prolongement analytique des germes d’applications holomorphes d’une hypersurface analytique réelle à une hypersurface algébrique réelle sont étendus au cas où la cible est une hypersurface de dimension supérieure à celle de la source. Plus précisément, nous prouvons ce qui suit : soit une hypersurface lisse, connexe, analytique réelle et minimale dans , et une hypersurface compacte, strictement pseudoconvexe, et algébrique réelle dans , avec . Supposons que soit le germe d’une application holomorphe en un point de , et soit contenu dans . Alors se prolonge à un application holomorphe le long de toute courbe sur , et le prolongement envoie dans . De plus, si et sont des domaines bornés lisses dans et respectivement, avec , la frontière de est analytique réelle, celle de D’ est algébrique réelle, et si est une application holomorphe propre qui admet un prolongement lisse à un voisinage d’un point de la frontière de , alors l’application se prolonge continûment à la fermeture de , et le prolongement est analytique sur un sous-ensemble dense de la frontière de .
In this paper we extend the results on analytic continuation of germs of holomorphic mappings from a real analytic hypersurface to a real algebraic hypersurface to the case when the target hypersurface is of higher dimension than the source. More precisely, we prove the following: Let be a connected smooth real analytic minimal hypersurface in , be a compact strictly pseudoconvex real algebraic hypersurface in , . Suppose that is a germ of a holomorphic map at a point in and is in . Then f extends as a holomorphic map along any smooth -curve on M with the extension sending to . Further, if and are smoothly bounded domains in and respectively, , the boundary of is real analytic, and the boundary of is real algebraic, and if is a proper holomorphic map which admits a smooth extension to a neighbourhood of a point in the boundary of , then the map extends continuously to the closure of , and the extension is holomorphic on a dense open subset of the boundary of .
Keywords: Holomorphic mappings, reflection Principle, boundary regularity, analytic continuation
Mots clés : applications holomorphes, principe de réflexion, prolongement analytique
Shafikov, Rasul 1 ; Verma, Kausha 2
@article{AIF_2007__57_6_2063_0, author = {Shafikov, Rasul and Verma, Kausha}, title = {Extension of holomorphic maps between real hypersurfaces of different dimension}, journal = {Annales de l'Institut Fourier}, pages = {2063--2080}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {6}, year = {2007}, doi = {10.5802/aif.2324}, mrnumber = {2377897}, zbl = {1149.32008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2324/} }
TY - JOUR AU - Shafikov, Rasul AU - Verma, Kausha TI - Extension of holomorphic maps between real hypersurfaces of different dimension JO - Annales de l'Institut Fourier PY - 2007 SP - 2063 EP - 2080 VL - 57 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2324/ DO - 10.5802/aif.2324 LA - en ID - AIF_2007__57_6_2063_0 ER -
%0 Journal Article %A Shafikov, Rasul %A Verma, Kausha %T Extension of holomorphic maps between real hypersurfaces of different dimension %J Annales de l'Institut Fourier %D 2007 %P 2063-2080 %V 57 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2324/ %R 10.5802/aif.2324 %G en %F AIF_2007__57_6_2063_0
Shafikov, Rasul; Verma, Kausha. Extension of holomorphic maps between real hypersurfaces of different dimension. Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 2063-2080. doi : 10.5802/aif.2324. https://aif.centre-mersenne.org/articles/10.5802/aif.2324/
[1] Holomorphic mappings from the ball and polydisc, Math. Ann., Volume 209 (1974), pp. 249-256 | DOI | MR | Zbl
[2] Algebraicity of holomorphic mappings between real algebraic sets in , Acta Math., Volume 177 (1996) no. 2, pp. 225-273 | DOI | MR | Zbl
[3] Real submanifolds in complex space and their mappings, Princeton Mathematical Series, 47, Princeton University Press, Princeton, NJ, 1999 | MR | Zbl
[4] Complex analytic sets, Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers Group, Dordrecht, 1989 (Translated from the Russian by R. A. M. Hoksbergen) | MR | Zbl
[5] Sur l’analyticité des applications CR lisses à valeurs dans un ensemble algébrique réel, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 11, pp. 953-956 | Zbl
[6] Holomorphic maps of algebraic CR manifolds, Internat. Math. Res. Notices (1999) no. 1, pp. 1-29 | DOI | MR | Zbl
[7] Pseudoconvex domains with real-analytic boundary, Ann. Math. (2), Volume 107 (1978) no. 2, pp. 371-384 | DOI | MR | Zbl
[8] Proper holomorphic mappings between real-analytic pseudoconvex domains in , Math. Ann., Volume 282 (1988) no. 4, pp. 681-700 | DOI | MR | Zbl
[9] Extension of CR maps into hermitian quadrics (2005) (preprint)
[10] A reflection principle for degenerate real hypersurfaces, Duke Math. J., Volume 47 (1980) no. 4, pp. 835-843 | DOI | MR | Zbl
[11] Proper holomorphic maps between balls in one co-dimension, Ark. Mat., Volume 28 (1990) no. 1, pp. 49-100 | DOI | MR | Zbl
[12] Embedding strictly pseudoconvex domains into balls, Trans. Amer. Math. Soc., Volume 295 (1986) no. 1, pp. 347-368 | MR | Zbl
[13] Extending proper holomorphic mappings of positive codimension, Invent. Math., Volume 95 (1989) no. 1, pp. 31-61 | DOI | MR | Zbl
[14] Boundary interpolation by proper holomorphic maps, Math. Z., Volume 194 (1987) no. 3, pp. 365-373 | DOI | MR | Zbl
[15] Applications holomorphes propres continues de domaines strictement pseudoconvexes de dans la boule unité de , Duke Math. J., Volume 60 (1990) no. 1, pp. 115-133 | DOI | MR | Zbl
[16] On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions, Ann. Inst. Fourier (Grenoble), Volume 44 (1994) no. 2, pp. 433-463 | DOI | Numdam | MR | Zbl
[17] Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991 (Translated from the Polish by Maciej Klimek) | Zbl
[18] Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls, Math. Z., Volume 190 (1985) no. 3, pp. 401-410 | DOI | MR | Zbl
[19] On the partial algebraicity of holomorphic mappings between two real algebraic sets, Bull. Soc. Math. France, Volume 129 (2001) no. 4, pp. 547-591 | Numdam | MR | Zbl
[20] On wedge extendability of CR-meromorphic functions, Math. Z., Volume 241 (2002) no. 3, pp. 485-512 | DOI | MR | Zbl
[21] Holomorphic extension of CR functions, envelopes of holomorphy, and removable singularities, IMRS Int. Math. Res. Surv. (2006), pp. 1-287 | MR | Zbl
[22] Holomorphic extension of smooth CR-mappings between real-analytic and real-algebraic CR-manifolds, Asian J. Math., Volume 7 (2003) no. 4, pp. 493-509 | MR | Zbl
[23] Uniformization of strictly pseudoconvex domains, I, II, Izv. Ross. Akad. Nauk Ser. Mat., Volume 69 (2005) no. 6, p. 1189-1202, 1203–1210 | MR | Zbl
[24] On holomorphic maps of real-analytic hypersurfaces, Math. USSR Sb., Volume 34 (1978), pp. 503-519 | DOI | Zbl
[25] Analytic continuation of holomorphic mappings and the problem of holomorphic classification of multidimensional domains, Moscow State Univ. (1980) Doctoral dissertation (Habilitation)
[26] Holomorphic maps in and the problem of holomorphic equivalence, Encyclopaedia of Mathematical Sciences: Several Complex Variables III, Volume 9, Springer-Verlag, 1989 | Zbl
[27] Extension of CR maps of positive codimension, Proc. Steklov Inst. Math., Volume 253 (2006), pp. 246-255 | DOI | MR
[28] Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo, Volume 23 (1907), pp. 185-220 | DOI
[29] Analytic continuation of germs of holomorphic mappings between real hypersurfaces in , Michigan Math. J., Volume 47 (2000) no. 1, pp. 133-149 | DOI | MR | Zbl
[30] On boundary regularity of proper holomorphic mappings, Math. Z., Volume 242 (2002) no. 3, pp. 517-528 | DOI | MR | Zbl
[31] Analytic continuation of holomorphic correspondences and equivalence of domains in , Invent. Math., Volume 152 (2003) no. 3, pp. 665-682 | DOI | MR | Zbl
[32] On CR-mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions, Trans. Amer. Math. Soc., Volume 348 (1996) no. 2, pp. 767-780 | DOI | MR | Zbl
[33] On the pseudo-conformal geometry of hypersurfaces of the space of complex variables, J. Math. Soc. Japan, Volume 14 (1962), pp. 397-429 | DOI | MR | Zbl
[34] Real-analytic hypersurfaces of complex manifolds, Russian Math. Surveys, Volume 40 (1985), pp. 1-35 | DOI | MR | Zbl
[35] On the mapping problem for algebraic real hypersurfaces, Invent. Math., Volume 43 (1977) no. 1, pp. 53-68 | DOI | MR | Zbl
[36] Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces, Acta Math., Volume 183 (1999) no. 2, pp. 273-305 | DOI | MR | Zbl
Cité par Sources :