Solutions non oscillantes d’une équation différentielle et corps de Hardy
Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 1825-1838.

Soit ϕ:xϕ(x),x0 une solution à l’infini d’une équation différentielle algébrique d’ordre n, P(x,y,y ,...,y (n) )=0. Nous donnons un critère géométrique pour que les germes à l’infini de ϕ et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.

Let ϕ:xϕ(x),x0 be a solution of an algebraic differential equation of order n, P(x,y,y ,...,y (n) )=0. We establish a geometric criterion so that the germs at infinity of ϕ and the identity function on belong to a common Hardy field. This criterion is based on the concept of non oscillation.

DOI : 10.5802/aif.2314
Classification : 34A26, 34C10, 34C08, 37C10
Mot clés : oscillation, corps de Hardy, semi-algébrique, pfaffien
Keywords: oscillation, Hardy field, semi-algebraic, pfaffian

Blais, François 1 ; Moussu, Robert 1 ; Sanz, Fernando 2

1 Université de Bourgogne IMB UFR Sciences et Tecniques 9 Avenue Alain Savary, BP47870 21004 Dijon cedex (France)
2 Universidad de Valladolid Depto. de Álgebra, Geometría y Topología Facultad de Ciencias E-47005 Valladolid (Spain)
@article{AIF_2007__57_6_1825_0,
     author = {Blais, Fran\c{c}ois and Moussu, Robert and Sanz, Fernando},
     title = {Solutions non oscillantes d{\textquoteright}une \'equation diff\'erentielle et corps de {Hardy}},
     journal = {Annales de l'Institut Fourier},
     pages = {1825--1838},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {6},
     year = {2007},
     doi = {10.5802/aif.2314},
     mrnumber = {2377887},
     zbl = {1133.34007},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2314/}
}
TY  - JOUR
AU  - Blais, François
AU  - Moussu, Robert
AU  - Sanz, Fernando
TI  - Solutions non oscillantes d’une équation différentielle et corps de Hardy
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 1825
EP  - 1838
VL  - 57
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2314/
DO  - 10.5802/aif.2314
LA  - fr
ID  - AIF_2007__57_6_1825_0
ER  - 
%0 Journal Article
%A Blais, François
%A Moussu, Robert
%A Sanz, Fernando
%T Solutions non oscillantes d’une équation différentielle et corps de Hardy
%J Annales de l'Institut Fourier
%D 2007
%P 1825-1838
%V 57
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2314/
%R 10.5802/aif.2314
%G fr
%F AIF_2007__57_6_1825_0
Blais, François; Moussu, Robert; Sanz, Fernando. Solutions non oscillantes d’une équation différentielle et corps de Hardy. Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 1825-1838. doi : 10.5802/aif.2314. https://aif.centre-mersenne.org/articles/10.5802/aif.2314/

[1] Arnolʼd, V. Chapitres supplémentaires de la théorie des équations différentielles ordinaires, “Mir”, Moscow, 1984 (Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition) | Zbl

[2] Benedetti, Riccardo; Risler, Jean-Jacques Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 | MR | Zbl

[3] Bochnak, J.; Coste, M.; Roy, M.-F. Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 12, Springer-Verlag, Berlin, 1987 | MR | Zbl

[4] Boshernitzan, Michael An extension of Hardy’s class L of “orders of infinity”, J. Analyse Math., Volume 39 (1981), pp. 235-255 | DOI | Zbl

[5] Boshernitzan, Michael Second order differential equations over Hardy fields, J. London Math. Soc. (2), Volume 35 (1987) no. 1, pp. 109-120 | DOI | MR | Zbl

[6] Cano, F.; Moussu, R.; Sanz, F. Oscillation, spiralement, tourbillonnement, Comment. Math. Helv., Volume 75 (2000) no. 2, pp. 284-318 | DOI | MR | Zbl

[7] Cano, F.; Moussu, R.; Sanz, F. Nonoscillating projections for trajectories of vector fields, Journal of Dynamical and Control Systems, Volume 13 (2007) no. 2, pp. 173-176 | DOI | MR | Zbl

[8] van den Dries, Lou Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[9] Grigorʼev, D. Yu.; Singer, M. F. Solving ordinary differential equations in terms of series with real exponents, Trans. Amer. Math. Soc., Volume 327 (1991) no. 1, pp. 329-351 | DOI | MR | Zbl

[10] Hardy, G. H. Properties of logarithmico-exponential functions, Proc. London Math. Soc.,, Volume 10 (1912) no. 2, pp. 54-90 | DOI

[11] Hardy, G. H. Some results concerning the behaviour at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proc. London Math. Soc.,, Volume 10 (1912), pp. 451-469 | DOI

[12] Khovanskiĭ, A. G. Fewnomials, Translations of Mathematical Monographs, 88, American Mathematical Society, Providence, RI, 1991 (Translated from the Russian by Smilka Zdravkovska) | MR | Zbl

[13] Lion, Jean-Marie; Miller, Chris; Speissegger, Patrick Differential equations over polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., Volume 131 (2003) no. 1, p. 175-183 (electronic) | DOI | MR | Zbl

[14] Moussu, R.; Roche, C. Théorie de Hovanskiĭ et problème de Dulac, Invent. Math., Volume 105 (1991) no. 2, pp. 431-441 | DOI | MR | Zbl

[15] Novikov, D.; Yakovenko, S. Trajectories of polynomial vector fields and ascending chains of polynomial ideals, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 2, pp. 563-609 | DOI | Numdam | MR | Zbl

[16] Perron, O. Über Differentialgliechungen erster Ordnung, die nicht nach der Ableitung aufgelöst sind, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 22 (1912), pp. 356-368

[17] Rosenlicht, Maxwell Hardy fields, J. Math. Anal. Appl., Volume 93 (1983) no. 2, pp. 297-311 | DOI | MR | Zbl

[18] Rosenlicht, Maxwell Growth properties of functions in Hardy fields, Trans. Amer. Math. Soc., Volume 299 (1987) no. 1, pp. 261-272 | DOI | MR | Zbl

[19] Rosenlicht, Maxwell Asymptotic solutions of Y =F(x)Y, J. Math. Anal. Appl., Volume 189 (1995) no. 3, pp. 640-650 | DOI | MR | Zbl

[20] Shackell, John Erratum : “Growth orders occurring in expansions of Hardy-field solutions of algebraic differential equations” [Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 183–221 ; MR1324130 (96f :34073)], Ann. Inst. Fourier (Grenoble), Volume 45 (1995) no. 5, pp. 1471

[21] Valiron, Georges Équations Fonctionnelles. Applications, Masson et Cie, Paris, 1945 | MR | Zbl

Cité par Sources :