The bar automorphism in quantum groups and geometry of quiver representations
Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 255-267.

Two geometric interpretations of the bar automorphism in the positive part of a quantized enveloping algebra are given. The first is in terms of numbers of rational points over finite fields of quiver analogues of orbital varieties; the second is in terms of a duality of constructible functions provided by preprojective varieties of quivers.

On donne deux interprétations géométriques de l’automorphisme barre de la partie positive d’une algèbre enveloppante quantique. La première est en terme de nombre de points rationnels sur des corps finis d’analogues de variétés orbitales en théorie des carquois. La seconde est en terme de dualité dans les fonctions constructibles sur la variéte préprojective.

DOI: 10.5802/aif.2179
Classification: 14L30, 17B37
Keywords: quantum groups, quiver representations, bar automorphism, preprojective variety
Caldero, Philippe 1; Reineke, Markus 2

1 Université Claude Bernard Lyon I Département de mathématiques 69622 Villeurbanne Cedex (France)
2 Universität Münster Mathematisches Institut 48149 Münster (Germany)
@article{AIF_2006__56_1_255_0,
     author = {Caldero, Philippe and Reineke, Markus},
     title = {The bar automorphism in quantum groups and geometry of quiver representations},
     journal = {Annales de l'Institut Fourier},
     pages = {255--267},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {1},
     year = {2006},
     doi = {10.5802/aif.2179},
     mrnumber = {2228687},
     zbl = {1134.17006},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2179/}
}
TY  - JOUR
AU  - Caldero, Philippe
AU  - Reineke, Markus
TI  - The bar automorphism in quantum groups and geometry of quiver representations
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 255
EP  - 267
VL  - 56
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2179/
DO  - 10.5802/aif.2179
LA  - en
ID  - AIF_2006__56_1_255_0
ER  - 
%0 Journal Article
%A Caldero, Philippe
%A Reineke, Markus
%T The bar automorphism in quantum groups and geometry of quiver representations
%J Annales de l'Institut Fourier
%D 2006
%P 255-267
%V 56
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2179/
%R 10.5802/aif.2179
%G en
%F AIF_2006__56_1_255_0
Caldero, Philippe; Reineke, Markus. The bar automorphism in quantum groups and geometry of quiver representations. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 255-267. doi : 10.5802/aif.2179. https://aif.centre-mersenne.org/articles/10.5802/aif.2179/

[1] Bongartz, K. On degenerations and extensions of finite dimensional modules, Adv. Math., Volume 121 (1996), pp. 245-287 | DOI | MR | Zbl

[2] Caldero, P. A multiplicative property of quantum flag minors, Representation Theory, Volume 7 (2003), pp. 164-176 | DOI | MR | Zbl

[3] Caldero, P.; Schiffler, R. Rational smoothness of varieties of representations for quivers of Dynkin type, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 295-315 | DOI | Numdam | MR | Zbl

[4] Kazhdan, D.; Lusztig, G. Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl

[5] Lusztig, G. Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., Volume 3 (1990), pp. 447-498 | DOI | MR | Zbl

[6] Lusztig, G.; Eguchi, T. Canonical bases arising from quantized enveloping algebras II, Common trends in mathematics and quantum field theories (Progr. of Theor. Phys. Suppl. 102) (1990), pp. 175-201 | MR | Zbl

[7] Lusztig, G. Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser, Boston, 1993 | MR | Zbl

[8] Reineke, M. Multiplicative properties of dual canonical bases of quantum groups, J. Algebra, Volume 211 (1999), pp. 134-149 | DOI | MR | Zbl

[9] Riedtmann, C. Lie algebras generated by indecomposables, J. Algebra, Volume 170 (1994), pp. 526-546 | DOI | MR | Zbl

[10] Ringel, C. M. Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, 1099, Springer, Berlin, 1984 | MR | Zbl

[11] Ringel, C. M. Hall algebras, Topics in Algebra, Part I (Banach Center Publ.), Volume 26 (1990), pp. 433-447 | MR | Zbl

[12] Ringel, C. M. Hall algebras and quantum groups, Invent. Math., Volume 101 (1990), pp. 583-591 | DOI | MR | Zbl

Cited by Sources: