In this article, we prove that there does not exist a family of maximal rank of entire curves in the universal family of hypersurfaces of degree in the complex projective space . This can be seen as a weak version of the Kobayashi conjecture asserting that a general projective hypersurface of high degree is hyperbolic in the sense of Kobayashi.
Dans cet article, nous démontrons qu’il n’existe pas de famille de rang maximal de courbes entières dans la famille universelle des hypersurfaces de degré dans l’espace projectif complexe . Cela peut se voir comme une version faible de la conjecture de Kobayashi affirmant qu’une hypersurface projective générale de haut degré est hyperbolique au sens de Kobayashi.
Keywords: projective hypersurfaces, entire curves, Kobayashi hyperbolicity
Mot clés : hypersurfaces projectives, courbes entières, hyperbolicité au sens de Kobayashi
@article{AIF_2006__56_1_247_0, author = {Debarre, Olivier and Pacienza, Gianluca and P\u{a}un, Mihai}, title = {Non-deformability of entire curves in projective hypersurfaces of high degree}, journal = {Annales de l'Institut Fourier}, pages = {247--253}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2178}, mrnumber = {2228686}, zbl = {1096.32010}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2178/} }
TY - JOUR AU - Debarre, Olivier AU - Pacienza, Gianluca AU - Păun, Mihai TI - Non-deformability of entire curves in projective hypersurfaces of high degree JO - Annales de l'Institut Fourier PY - 2006 SP - 247 EP - 253 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2178/ DO - 10.5802/aif.2178 LA - en ID - AIF_2006__56_1_247_0 ER -
%0 Journal Article %A Debarre, Olivier %A Pacienza, Gianluca %A Păun, Mihai %T Non-deformability of entire curves in projective hypersurfaces of high degree %J Annales de l'Institut Fourier %D 2006 %P 247-253 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2178/ %R 10.5802/aif.2178 %G en %F AIF_2006__56_1_247_0
Debarre, Olivier; Pacienza, Gianluca; Păun, Mihai. Non-deformability of entire curves in projective hypersurfaces of high degree. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 247-253. doi : 10.5802/aif.2178. https://aif.centre-mersenne.org/articles/10.5802/aif.2178/
[1] Compact manifolds in hyperbolicity, Trans. Amer. Math. Soc., Volume 235 (1978), pp. 213-219 | MR | Zbl
[2] On entire curves tangent to a foliation (preprint 2004)
[3] Courbes entières dans les surfaces algébriques complexes (d’après McQuillan, Demailly-El Goul,), Astérisque (2002) no. 282, pp. 39-61 (Séminaire Bourbaki, Vol. 2000/2001, Exp. No. 881, vii) | Numdam | MR | Zbl
[4] Lower bounds on genera of subvarieties of generic hypersurfaces, Comm. Algebra (2003) no. 31, pp. 3673-3711 (Special issue in honor of Steven L. Kleiman) | DOI | MR | Zbl
[5] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 285-360 | MR | Zbl
[6] Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math., Volume 122 (2000), pp. 515-546 | DOI | MR | Zbl
[7] Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1998 no. 318 | MR | Zbl
[8] Holomorphic curves on hyperplane sections of -folds, Geom. Funct. Anal. (1999) no. 9, pp. 370-392 | DOI | MR | Zbl
[9] Weak analytic hyperbolicity of generic hypersurfaces of high degree in the complex projective space of dimension 4 (preprint math.AG/0510285)
[10] Meromorphic mappings onto compact complex spaces of general type, Invent. Math. (1975) no. 31, pp. 7-16 | DOI | MR | Zbl
[11] Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 543-566 | MR | Zbl
[12] On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom. (1996) no. 44, pp. 200-214 | MR | Zbl
[13] A correction: “On a conjecture of Clemens on rational curves on hypersurfaces”, J. Diff. Geom. (1998) no. 49, pp. 601-611 | MR | Zbl
Cited by Sources: