[Intégrales matricielles non-commutatives et variétés de représentations du groupe d'une surface dans un groupe fini]
Une nouvelle formule est établie pour l'expansion asymptotique d'une intégrale matricielle avec des valeurs dans une algèbre de von Neumann de dimension finie en terme de graphes sur les surfaces orientables ou non-orientables.
A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.
Keywords: Random matrices, non-commutative matrix integral, Feynman diagram expansion, ribbon graph, Moebius graph, von Neumann algebra, representation variety
Mot clés : matrices aléatoires, intégrale non commutative de matrice, expansion de diagramme de Feynman, graphe de ruban, graphe de Moebius, algèbre de von Neumann, variété de représentations
Mulase, Motohico 1 ; T. Yu, Josephine 
@article{AIF_2005__55_6_2161_0, author = {Mulase, Motohico and T. Yu, Josephine}, title = {Non-commutative matrix integrals and representation varieties of surface groups in a finite group}, journal = {Annales de l'Institut Fourier}, pages = {2161--2196}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2157}, zbl = {1092.15020}, mrnumber = {2187951}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2157/} }
TY - JOUR AU - Mulase, Motohico AU - T. Yu, Josephine TI - Non-commutative matrix integrals and representation varieties of surface groups in a finite group JO - Annales de l'Institut Fourier PY - 2005 SP - 2161 EP - 2196 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2157/ DO - 10.5802/aif.2157 LA - en ID - AIF_2005__55_6_2161_0 ER -
%0 Journal Article %A Mulase, Motohico %A T. Yu, Josephine %T Non-commutative matrix integrals and representation varieties of surface groups in a finite group %J Annales de l'Institut Fourier %D 2005 %P 2161-2196 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2157/ %R 10.5802/aif.2157 %G en %F AIF_2005__55_6_2161_0
Mulase, Motohico; T. Yu, Josephine. Non-commutative matrix integrals and representation varieties of surface groups in a finite group. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2161-2196. doi : 10.5802/aif.2157. https://aif.centre-mersenne.org/articles/10.5802/aif.2157/
[1] Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum, Ann. of Math. (2), Volume 153 (2001) no. 1, pp. 149-189 | DOI | MR | Zbl
[2] On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., Volume 12 (1999), pp. 1119-1178 | DOI | MR | Zbl
[3] On the distribution of the length of the second row of a Young diagram under Plancherel measure (1999) (math.CO/9901118, http://arxiv.org/abs/math.CO/9901118) | Zbl
[4] Symmetrized random permutations (1999) (math.CO/9910019, http://arxiv.org/abs/math.CO/9910019) | Zbl
[5] On galois extensions of a maximal cyclotomic fields, Math. USSR Izvestija, Volume 14 (1980), pp. 247-256 | DOI | MR | Zbl
[6] Quantum field theory techniques in graphical enumeration, Advances Applied Math., Volume 1 (1980), pp. 109-157 | DOI | MR | Zbl
[7] Random matrix models and their applications, Math. Sci. Research Institute Publications, 40, Cambridge University Press, 2001 | MR | Zbl
[8] On asymptotics of Plancherel measures for symmetric groups (1999) (math.CO/990532, http://arxiv.org/abs/math.CO/9905032) | Zbl
[9] Planar diagrams, Comm. Math. Physics, Volume 59 (1978), pp. 35-51 | DOI | MR | Zbl
[10] Theory of groups of finite order, 2nd ed., Cambridge University Press, 1991 | JFM
[11] Integrable systems and combinatorial theory, Notices AMS, Volume 47 (2000), pp. 631-640 | MR | Zbl
[12] Space-time approach to quantum electrodynamics, Phys. Review, Volume 76 (1949), pp. 769-789 | DOI | MR | Zbl
[13] Chern-Simons theory with finite gauge group, Communications in Mathematical Physics, Volume 156 (1993), pp. 435-472 | DOI | MR | Zbl
[14] Über Gruppencharaktere, Sitzungsberichte der königlich preussischen Akademie der Wissenschaften (1896), pp. 985-1021 | JFM
[15] Über die reellen 11arstellungen der endlichen Gruppen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1906), pp. 186-208 | JFM
[16] Teichmüller theory and quadratic differentials, John Wiley \& Sons, 1987 | MR | Zbl
[17] A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 4405-4427 | DOI | MR | Zbl
[18] Two dimensional QCD is a string theory, Nucl. Phys., Volume B 400 (1993), pp. 181-210 | MR | Zbl
[19] Topological graph theory, John Wiley \& Sons, 1987 | MR | Zbl
[20] Esquisse d'un programme (1984) (reprinted in [46], 748)
[21] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986), pp. 157-176 | DOI | MR | Zbl
[22] The Euler characteristic of the moduli space of curves, Invent. Math., Volume 85 (1986), pp. 457-485 | DOI | MR | Zbl
[23] On triangulations of surfaces, Topology and Appl., Volume 40 (1991), pp. 189-194 | DOI | MR | Zbl
[24] Character theory of finite groups, Academic Press, 1976 | MR | Zbl
[25] Discrete orthogonal polynomial ensembles and the Plancherel measure (1999) (math.CO/9906120, http://arxiv.org/abs/math.CO/9906120) | Zbl
[26] Characters and surfaces: a survey, Lecture Note Series, 249, London Math. Soc., 1998 | MR | Zbl
[27] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Physics, Volume 147 (1992), pp. 1-23 | DOI | MR | Zbl
[28] Heat kernel and moduli space, Math. Research Letters, Volume 3 (1996), pp. 743-762 | MR | Zbl
[29] Heat kernel and moduli space II, Math. Research Letters, Volume 4 (1996), pp. 569-588 | MR | Zbl
[30] Heat kernels, symplectic geometry, moduli spaces and finite groups, Surveys Diff. Geom., Volume 5 (1999), pp. 527-542 | MR | Zbl
[31] Determination of the number of nonequivalent coverings over a compact Riemann surface, Soviet Math. Doklady, Volume 19 (1978), pp. 318-320 | Zbl
[32] Random matrices, 2nd ed., Academic Press, 1991 | MR | Zbl
[33] Algebraic theory of the KP equations (Perspectives in Mathematical Physics) (1994), pp. 157-223 | Zbl
[34] Matrix integrals and integrable systems (Topology, geometry and field theory) (1994), pp. 111127 | Zbl
[35] Asymptotic analysis of a hermitian matrix integral, Int. J. Math., Volume 6 (1995), pp. 881-892 | DOI | MR | Zbl
[36] Lectures on the asymptotic expansion of a hermitian matrix integral, Supersymmetry and Integrable Models (Springer Lecture Notes in Physics), Volume 502 (1998), pp. 91134 | Zbl
[37] Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over , Asian J. Math., Volume 2 (1998), pp. 875-920 | MR | Zbl
[38] Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs (2002) (math-ph/0206011, http://arxiv.org/abs/math-ph/0206011) | MR | Zbl
[39] A generating function of the number of homomorphisms from a surface groupin to a ?nite group (2002) (math.QA/0209008, http://arxiv.org/abs/math.QA/0209008)
[40] Random matrices and random permutations (1999) (math.CO/9903176, http://arxiv.org/abs/math.CO/9903176) | MR | Zbl
[41] Mapcolor theorem, Springer-Verlag, 1974
[42] The equivariant Gromov-Witten theory of (2002) (math.AG/0207233, http://arxiv.org/abs/math.AG/0207233) | Zbl
[43] Perturbation series and the moduli space of Riemann surfaces, J. Diff. Geom., Volume 27 (1988), pp. 35-53 | MR | Zbl
[44] Map color theorem, Springer-Verlag, 1974 | MR | Zbl
[45] The Grothendieck theory of dessins d'enfants, Lecture Notes Series, 200, London Math. Soc., 1994 | Zbl
[46] Geometric Galois actions: around Grothendieck's esquisse d'un programme, Lecture Notes Series, 242, London Math. Soc., 1997 | Zbl
[47] Linear representations of finite groups, Springer-Verlag, 1987 | MR | Zbl
[48] Enumerative combinatorics, 2, Cambridge University Press, 2001 | Zbl
[49] Quadratic differentials, Springer-Verlag, 1984 | MR | Zbl
[50] A planer diagram theory for strong interactions, Nuclear Physics B, Volume 72 (1974), pp. 461-473 | DOI
[51] Fredholm Determinants, Differential Equations and Matrix Models, hep-th/9306042, Comm. Math. Physics, Volume 163 (1994), pp. 33-72 | DOI | MR | Zbl
[52] Integrable lattices: random matrics and random permutations, Random Matrix Models and Their Applications (MSRI Publications), Volume 40 (2001), pp. 321-406 | Zbl
[53] On quantum gauge theories in two dimensions, Comm. Math. Physics, Volume 141 (1991), pp. 153-209 | DOI | MR | Zbl
[54] Two dimensional gravity and intersection theory on moduli space, Surveys Diff. Geom., Volume 1 (1991), pp. 243-310 | MR | Zbl
[55] Graphical expansion of matrix integrals with values in a Clifford algebra (Explorations: A Journal of Undergraduate Research), Volume 6 (2003)
Cité par Sources :