[Géométrie des systèmes de Calogero-Moser]
Nous donnons une construction géométrique de l’espace de phase du système de Calogero- Moser elliptique, pour des systèmes de racines arbitraires, comme espace de paires (fibrés, champs de Higgs) sur la -ième puissance de la courbe elliptique, où est le rang du sytème de racines. La structure de Poisson ainsi que les Hamiltoniens ont alors des constructions géométriques naturelles. Nous exhibons aussi une dualité surprenante entre les variétés spectrales du système de Calogero-Moser associé à un système de racines, et les variétés Lagrangiennes correspondant au système de racines dual. Enfin, nous montrons comment, pour le système , notre construction se réduit à une construcion connue.
We give a geometric construction of the phase space of the elliptic Calogero-Moser system for arbitrary root systems, as a space of Weyl invariant pairs (bundles, Higgs fields) on the -th power of the elliptic curve, where is the rank of the root system. The Poisson structure and the Hamiltonians of the integrable system are given natural constructions. We also exhibit a curious duality between the spectral varieties for the system associated to a root system, and the Lagrangian varieties for the integrable system associated to the dual root system. Finally, the construction is shown to reduce to an existing one for the root system.
Keywords: Integrable systems, classical mechanics, Calogero-Moser systems, Higgs pairs
Mot clés : systémes intégrables, mécanique classique, système de Calogero-Moser, champs de Higgs
Hurtubise, Jacques 1 ; Nevins, Thomas 
@article{AIF_2005__55_6_2091_0, author = {Hurtubise, Jacques and Nevins, Thomas}, title = {The geometry of {Calogero-Moser} systems}, journal = {Annales de l'Institut Fourier}, pages = {2091--2116}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2153}, zbl = {02230069}, mrnumber = {2187947}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2153/} }
TY - JOUR AU - Hurtubise, Jacques AU - Nevins, Thomas TI - The geometry of Calogero-Moser systems JO - Annales de l'Institut Fourier PY - 2005 SP - 2091 EP - 2116 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2153/ DO - 10.5802/aif.2153 LA - en ID - AIF_2005__55_6_2091_0 ER -
%0 Journal Article %A Hurtubise, Jacques %A Nevins, Thomas %T The geometry of Calogero-Moser systems %J Annales de l'Institut Fourier %D 2005 %P 2091-2116 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2153/ %R 10.5802/aif.2153 %G en %F AIF_2005__55_6_2091_0
Hurtubise, Jacques; Nevins, Thomas. The geometry of Calogero-Moser systems. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2091-2116. doi : 10.5802/aif.2153. https://aif.centre-mersenne.org/articles/10.5802/aif.2153/
[AMM] Comm. Pure Appl. Math., 30 (1977) no. 1, pp. 95-148 | DOI | MR | Zbl
[BCS] Generalized Calogero-Moser models and universal Lax pair operators, Progr. Theoret. Phys., Volume 102 (1999) no. 3, pp. 499-529 | DOI | MR
[BN] From solitons to many-body systems (math.AG/0310490, http://arxiv.org/abs/math.AG/0310490)
[Bo] Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. École Norm. Sup. (4), Volume 28 (1995) no. 4, pp. 391-433 | Numdam | MR | Zbl
[Ca] Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., Volume 12 (1971), pp. 419-436 | DOI | MR | Zbl
[CG] Hilbert schemes, Hecke algebras and the Calogero-Sutherland system (math.AG/0310189, http://arxiv.org/abs/math.AG/0310189)
[dHP] Calogero-Moser Lax pairs with spectral parameter for general Lie algebras (Nuclear Phys. B), Volume 530 (1998), pp. 537-610 | Zbl
[Do] Seiberg-Witten integrable systems, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[EG] Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl
[FMW] Principal -bundles over elliptic curves, Math. Res. Lett., Volume 5-1 (1998) no. 2, pp. 97-118 | MR | Zbl
[HuMa] Surfaces and the Sklyanin bracket, Commun. Math. Phys., Volume 230 (2002), pp. 485-502 | DOI | MR | Zbl
[KhS] Liouville integrability of classical Calogero-Moser models, Phys. Lett. A, Volume 279-3 (2001) no. 4, pp. 189-193 | MR | Zbl
[Kr] Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl., Volume 14 (1980), pp. 282-290 | Zbl
[Lo] Root systems and elliptic curves, Inv. Math., Volume 38 (1976), pp. 17-32 | DOI | MR | Zbl
[Ma] Spectral curves and integrable systems, Compositio Math., Volume 93 (1994), pp. 255-290 | Numdam | MR | Zbl
[Mo] Three integrable Hamiltonian systems connected with isospectral deformations, Advances in Math., Volume 16 (1975), pp. 197-220 | DOI | MR | Zbl
[OP] Completely integrable Hamiltonian systems connected with semisimple Lie algebras, Inventiones Math., Volume 37 (1976), pp. 93-108 | DOI | MR | Zbl
[Su] Exact results for a quantum many-body problem in one-dimension. II, Phys. Rev., Volume A5 (1972), pp. 1372-1376
[Wi] Collisions of Calogero-Moser particles and an adelic Grassmannian, Inventiones Math., Volume 133 (1998), pp. 1-41 | DOI | MR | Zbl
Cité par Sources :