On the heat kernel and the Korteweg--de Vries hierarchy
Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2117-2127.

We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.

Nous donnons des formules explicites pour les coefficients d'Hadamard en termes de la fonction tau de la hiérarchie de Korteweg-de Vries. A partir de cette formule nous pouvons facilement démontrer les propriétés de ces coefficients.

DOI: 10.5802/aif.2154
Classification: 35Q53, 35K05, 37K10
Keywords: Heat kernel expansions, KdV hierarchy, tau functions
Mot clés : Noyau de la chaleur, hiérarchie de KdV, fonctions tau
Iliev, Plamen 1

1 Georgia Institute of Technology, school of mathematics, Atlanta GA 30332-0160 (USA)
     author = {Iliev, Plamen},
     title = {On the heat kernel and the {Korteweg--de} {Vries} hierarchy},
     journal = {Annales de l'Institut Fourier},
     pages = {2117--2127},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     doi = {10.5802/aif.2154},
     zbl = {1078.35103},
     mrnumber = {2187948},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2154/}
AU  - Iliev, Plamen
TI  - On the heat kernel and the Korteweg--de Vries hierarchy
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 2117
EP  - 2127
VL  - 55
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2154/
DO  - 10.5802/aif.2154
LA  - en
ID  - AIF_2005__55_6_2117_0
ER  - 
%0 Journal Article
%A Iliev, Plamen
%T On the heat kernel and the Korteweg--de Vries hierarchy
%J Annales de l'Institut Fourier
%D 2005
%P 2117-2127
%V 55
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2154/
%R 10.5802/aif.2154
%G en
%F AIF_2005__55_6_2117_0
Iliev, Plamen. On the heat kernel and the Korteweg--de Vries hierarchy. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2117-2127. doi : 10.5802/aif.2154. https://aif.centre-mersenne.org/articles/10.5802/aif.2154/

[1] M. Adler; J. Moser On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., Volume 61 (1978), pp. 1-30 | DOI | MR | Zbl

[2] H. Airault; H. P. McKean; J. Moser Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math., Volume 30 (1977), pp. 95-148 | DOI | MR | Zbl

[3] G. Andrews; R. Askey; R. Roy Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1990 | Zbl

[4] I. Avramidi; R. Schimming A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., Volume 219 (2000), pp. 45-64 | DOI | MR | Zbl

[5] N. Berline; E. Getzler; M. Vergne Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl

[6] M. Berger Geometry of the Spectrum, Proc. Sympos. Pure Math., 27, Amer. Math. Soc., Providence, 1975 | Zbl

[7] E. Date; M. Jimbo; M. Kashiwara; T. Miwa; M. Jimbo and T. Miwa Transformation groups for soliton equations (Proc. RIMS Symp. Nonlinear Integrable Systems - Classical and Quantum Theory (Kyoto 1981)) (1983), pp. 39-119 | Zbl

[8] L. A. Dickey Soliton Equations and Hamiltonian Systems, 2nd Edition, Advanced Series in Mathematical Physics, 26, World Scienti?c, 2003 | MR | Zbl

[9] J. J. Duistermaat; F. A. Grünbaum Differential equations in the spectral parameter, Comm. Math. Phys., Volume 103 (1986), pp. 177-240 | DOI | MR | Zbl

[10] S. A. Fulling (ed.) Heat kernel techniques and quantum gravity (Winnipeg, MB, 1994), Discourses Math. Appl., 4, Texas A & M Univ., College Station, TX, 1995 | MR | Zbl

[11] P. Gilkey Heat equation asymptotics, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 54, Part 3, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[12] F. A. Grünbaum; P. Iliev Heat kernel expansions on the integers, Math. Phys. Anal. Geom., Volume 5 (2002), pp. 183-200 | DOI | MR | Zbl

[13] J. Hadamard Lectures on Cauchy's Problem, New Haven, Yale Univ. Press (1923) | JFM

[14] L. Haine The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations (to appear in Annales de l'Institut Fourier) | Numdam

[15] R. Hirota; Cambridge Tracts in Mathematics The direct method in soliton theory (Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson (with a foreword by Jarmo Hietarinta and Nimmo)), Volume 155 (2004) | Zbl

[16] P. Iliev Finite heat kernel expansions on the real line (math-ph/0504046, http://arxiv.org/abs/math-ph/0504046) | Zbl

[17] M. Kac Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966), pp. 1-23 | DOI | MR | Zbl

[18] H. P. McKean; I. Singer Curvature and the eigenvalues of the Laplacian, J. Diff. Geom., Volume 1 (1967), pp. 43-69 | MR | Zbl

[19] H. P. McKean; P. van Moerbeke The spectrum of Hill's equation, Invent. Math., Volume 30 (1975), pp. 217-274 | DOI | MR | Zbl

[20] M. Sato; Y. Sato Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes Num. Appl. Anal., Volume 5 (1982), pp. 259-271 | MR | Zbl

[21] R. Schimming An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen, Volume 7 (1988), pp. 203-214 | MR | Zbl

[22] P. van Moerbeke; O. Babelon et al. Integrable foundations of string theory, Lectures on integrable systems, CIMPA-Summer school at Sophia– Antipolis (1991) (1994), pp. 163-267 | Zbl

Cited by Sources: