We introduce a Lie algebra, which we call adelic -algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.
Nous construisons une algèbre nommée adélique -algèbre puis, nous construisons une représentation bosonique naturelle. Nous montrons ensuite que les points des espaces de Calogero-Moser sont en correspondance biunivoque avec les fonctions tau en cette représentation.
Keywords: Fock spaces, bispectral operators, Sato's theory for KP hierarchy
Mot clés : espaces de Fock, opérateurs bispectraux, théorie de Sato de KP-hiérarchie
Horozov, Emil 1
@article{AIF_2005__55_6_2069_0, author = {Horozov, Emil}, title = {Calogero-Moser spaces and an adelic $W$-algebra}, journal = {Annales de l'Institut Fourier}, pages = {2069--2090}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2152}, zbl = {02230068}, mrnumber = {2187946}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2152/} }
TY - JOUR AU - Horozov, Emil TI - Calogero-Moser spaces and an adelic $W$-algebra JO - Annales de l'Institut Fourier PY - 2005 SP - 2069 EP - 2090 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2152/ DO - 10.5802/aif.2152 LA - en ID - AIF_2005__55_6_2069_0 ER -
%0 Journal Article %A Horozov, Emil %T Calogero-Moser spaces and an adelic $W$-algebra %J Annales de l'Institut Fourier %D 2005 %P 2069-2090 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2152/ %R 10.5802/aif.2152 %G en %F AIF_2005__55_6_2069_0
Horozov, Emil. Calogero-Moser spaces and an adelic $W$-algebra. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2069-2090. doi : 10.5802/aif.2152. https://aif.centre-mersenne.org/articles/10.5802/aif.2152/
[1] On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys., Volume 61 (1978), pp. 1-30 | DOI | MR | Zbl
[2] Rational and elliptic solutions to the Korteweg-de Vries equation and related many-body problem, Comm. Pure Appl. Math., Volume 30 (1977), pp. 95-148 | DOI | MR | Zbl
[3] A Lax representation for the vertex operator and the central extension, Commun. Math. Phys., Volume 171 (1995), pp. 547-588 | DOI | MR | Zbl
[4] A QFT approach to , New Trends in Quantum Field Theory, Proc. of the 1995 Razlog (Bulgaria) Workshop (1996), pp. 147-158
[5] Tau-functions as highest weight vectors for algebra, J. Phys. A. Math. Gen., Volume 29 (1996), pp. 5565-5573 | DOI | MR | Zbl
[6] Bäcklund-Darboux transformations in Sato's Grassmannian, Serdica Math. J., Volume 4 (1996) | MR | Zbl
[7] Bispectral algebras of commuting ordinary differential operators, Comm. Mat. Phys., Volume 190 (1997), pp. 331-373 | DOI | MR | Zbl
[8] Highest weight modules over , and the bispectral problem, Duke Math. J., Volume 93 (1998), pp. 41-72 | DOI | MR | Zbl
[9] Automorphisms and ideals of the Weyl algebra, Math. Ann., Volume 318 (2000) no. 1, pp. 127-147 | DOI | MR | Zbl
[10] Ideal classes of the Weyl algebra and noncommutative projective geometry (2001) (arXiv.math.AG/0104248, http://arxiv.org/abs/math.AG/0104248) | Zbl
[11] Right ideals in rings of differential operators, J. Algebra, Volume 167 (1994), pp. 116-141 | DOI | MR | Zbl
[12] Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., Volume 12 (1971), pp. 419-436 | DOI | MR | Zbl
[13] Transformation groups for soliton equations, Proc. RIMS Symp., Nonlinear integrable systems - Classical and Quantum theory, (Kyoto 1981) (1983), pp. 39-111 | Zbl
[14] Soliton equations and integrable systems, Singapore: World Scientific (1991) | MR | Zbl
[15] Differential equations in the spectral parameter, Commun. Math. Phys., Volume 103 (1986), pp. 177-240 | DOI | MR | Zbl
[16] Master-symmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theor. Phys., Volume 70 (1983) no. 6, pp. 1508-1522 | DOI | MR | Zbl
[17] On the symmetries of the integrable system, Modern development of the Soliton theory (1992)
[18] The limited angle reconstruction problem in computer tomography (Proc. Symp. Appl. Math.), Volume 27 (1982), pp. 43-61 | Zbl
[19] Some functions that generalize the Krall-Laguerre polynomials, J. Comp. Appl. Math., Volume 106 (1999) no. 2, pp. 271-297 | DOI | MR | Zbl
[20] Discrete bispectral Darboux transformations from Jacobi operators (2000) (arXiv.mat.CA/0012191, http://arxiv.org/abs/math.CA/0012191) | Zbl
[21] Commutative rings of difference operators and an adelic flag manifold, Int. Math. Res. Notices, Volume 6 (2000), pp. 281-323 | MR | Zbl
[22] Dual algebras of differential operators, in: Kowalevski property (Montréal), CRM Proc. Lecture Notes, Surveys from Kowalevski Workshop on Mathematical methods of Regular Dynamics, Leeds, April 2000 (2002) no. Amer. Math. Soc. Providence | MR | Zbl
[23] The Weyl algebra, bispectral operators and dynamics of poles in integrable systems, Reg. \& Chaotic Dynamics, Volume 7 (2002) no. 4, pp. 399-424 | DOI | MR | Zbl
[24] Algèbres commutatives d'opérateurs aux -differences et systèmes de Calogero-Moser, C. R. Sci. Paris, Série I, Volume 329 (1999), pp. 877-882 | MR | Zbl
[25] Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math., Volume 31 (1978), pp. 481-507 | DOI | MR | Zbl
[26] On Rational solutions of Kadomtsev-Petviashvily equation and integrable systems of particles on the line, Funct. Anal. Appl., Volume 12 (1978) no. 1, pp. 76-78 | Zbl
[27] Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA, Volume 78 (1981), pp. 3308-3312 | DOI | MR | Zbl
[28] Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Commun. Math. Phys., Volume 9308153 (1993) no. 157, pp. 429-457 | MR | Zbl
[29] Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Adv. Ser. Math. Phys., 2, Singapore: World Scientific, 1987 | Zbl
[30] Bispectral KP solutions and linearization of Calogero-Moser particle systems, Commun. Math. Phys., Volume 172 (1995), pp. 427-448 | DOI | MR | Zbl
[31] Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., Volume 16 (1975), pp. 197-220 | DOI | MR | Zbl
[32] Vertex operators, -problem, symmetries, variational identities and Hamiltonian formalism for integrable systems, Proc. Kiev Intern. Workshop, Plasma theory and non-linear and turbulent processes in Physics (1988) | Zbl
[33] Additional symmetries for integrable and conformal algebra representation, Lett. Math. Phys., Volume 12 (1989), pp. 171-179 | Zbl
[34] Explicit formulas for the Airy and Bessel involutions in terms of Calogero-Moser pairs, The Bispectral Problem (1998), pp. Providence | Zbl
[35] Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku, Volume 439 (1981), pp. 30-40 | Zbl
[36] Loop Groups and equations of KdV type, Publ. Math. IHES, Volume 61 (1985), pp. 5-65 | Numdam | MR | Zbl
[37] Integrable foundations of string theory (CIMPA-Summer school at Sophia-Antipolis (1991), in: Lectures on integrable systems) (1994), pp. 163-267 | Zbl
[38] Bispectral commutative ordinary differential operators, J. Reine Angew. Math., Volume 442 (1993), pp. 177-204 | MR | Zbl
[39] Collisions of Calogero-Moser particles and an adelic Grassmannian (with an appendix by I. G. Macdonald), Invent. Math., Volume 133 (1998), pp. 1-41 | MR | Zbl
Cited by Sources: