[La hiérarchie de Kadomtsev-Petviashvili symplectique et la solution ratio\-nnelle de Painlevé VI]
Nous établissons des connexions entre une certaine classe d’ équations de Painlevé VI paramétrée par une dimension conforme , des équations de type Euler top dépendant du temps, des déformations et des variétés de Frobenius de dimensions 3. Nous construisons explicitement la fonction isomonodromique tau et des solutions d’équations de type Euler top en terme de solutions wronskiennes de la hiérarchie de Kadomtsev-Petviashvili symplectique à 1 contrainte et 2 vecteurs. Nous utilisons ici la formulation grasmannienne. Ces solutions wronskiennes donnent des solutions rationelles de l’équations de Painlevé VI pour
Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension , time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give rational solutions to the Painlevé VI equation for
Keywords: KP hierarchy, Grassmanian, Frobenius manifold, isomonodromic deformation, painlevé VI
Mot clés : hiérarchie de Kadomtsev-Petviashvili, formulation Grassmanienne, variétes de Frobenius, déformation isomonodromique, painlevé VI
Aratyn, Henrik 1 ; van de LEUR, Johan 
@article{AIF_2005__55_6_1871_0, author = {Aratyn, Henrik and van de LEUR, Johan}, title = {The symplectic {Kadomtsev-Petviashvili} hierarchy and rational solutions of {Painlev\'e} {VI}}, journal = {Annales de l'Institut Fourier}, pages = {1871--1903}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2145}, zbl = {1093.14015}, mrnumber = {2187939}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2145/} }
TY - JOUR AU - Aratyn, Henrik AU - van de LEUR, Johan TI - The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI JO - Annales de l'Institut Fourier PY - 2005 SP - 1871 EP - 1903 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2145/ DO - 10.5802/aif.2145 LA - en ID - AIF_2005__55_6_1871_0 ER -
%0 Journal Article %A Aratyn, Henrik %A van de LEUR, Johan %T The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI %J Annales de l'Institut Fourier %D 2005 %P 1871-1903 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2145/ %R 10.5802/aif.2145 %G en %F AIF_2005__55_6_1871_0
Aratyn, Henrik; van de LEUR, Johan. The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 1871-1903. doi : 10.5802/aif.2145. https://aif.centre-mersenne.org/articles/10.5802/aif.2145/
[1] WDVV equations, Darboux-Egoroff metric and the dressing method (2002) (contribution to the UNESP2002 workshop on Integrable Theories, Solitons and Duality, http://jhep.sissa.it or [arXiv:math-ph/0210038) | MR | Zbl
[2] Integrable structures behind WDVV equations (Teor. Math. Phys.), Volume 134 (2003), pp. 14-26 | Zbl
[3] Solutions of the WDVV Equations and Integrable Hierarchies of KP Type, Commun. Math. Phys., Volume 239 (2003), pp. 155-182 | DOI | MR | Zbl
[4] Multi-component matrix KP hierarchies as symmetry-enhanced scalar KP hierarchies and their Darboux-Bäcklund solutions, in Bäcklund and Darboux transformations., The geometry of solitons (Halifax, NS, 1999) (CRM Proc. Lecture Notes), Volume 29 (2001), pp. 109-120 | Zbl
[5] Transformation groups for soliton equations. 6. KP hierarchies of orthogonal and symplectic type, J. Phys. Soc., Japan, Volume 50 (1981), pp. 3813-3818 | DOI | MR | Zbl
[6] Integrable systems and classification of 2-dimensional topological field theories, Integrable Systems, proceedings of Luminy 1991 conference dedicated to the memory of J.-L. Verdier, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach (1993), pp. 313-359 | Zbl
[7] Geometry on 2D topological field theories, Integrable Systems and Quantum Groups (Montecatini Terme, 1993) (Lecture Notes in Math.), Volume 1620 (1996), pp. 120-348 | Zbl
[8] Monodromy of certain Painlevé VI trascendents and reflection groups, Invent. Math., Volume 141 (2000), pp. 55-147 | DOI | MR | Zbl
[9] Frobenius manifolds and Virasoro constraints., Selecta Math. (N.S.), Volume 5 (1999) no. 4, pp. 423-466 | DOI | MR | Zbl
[10] Geometric Bäcklund-Darboux transformations for the KP hierarchy, Publ. Res. Inst. Math. Sci., Volume 37 (2001) no. 4, pp. 479-519 | DOI | MR | Zbl
[11] An analytic description of the vector constrained KP hierarchy, Commun. Math Phys., Volume 193 (1998), pp. 627-641 | DOI | MR | Zbl
[12] Constrained and Rational Reductions of the KP hierarchy, Supersymmetry and Integrable Models (Springer Lecture Notes in Physics), Volume 502 (1998), pp. 167-182 | Zbl
[13] Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom., Volume 42 (1995), pp. 30-112 | MR | Zbl
[14] Poncelet polygons and the Painlevé transcendents (Geometry and Analysis) (1996), pp. 151-185 | Zbl
[15] A new family of Einstein metrics, manifolds and geometry (Manifolds and geometry (Pisa, 1993), Sympos. Math., XXXVI) (1996), pp. 190-222 | Zbl
[16] Monodromy preserving deformations of linear ordinary differential equations with rational coefficients I, Physica 2D, Volume 2 (1981), pp. 306-352 | DOI | MR
[17] Monodromy preserving deformations of linear ordinary differential equations with rational coefficients II, Physica 2D, Volume 3 (1981), pp. 407-448 | MR
[18] Monodromy preserving deformations of linear ordinary differential equations with rational coefficients III, Physica 2D, Volume 4 (1981), pp. 26-46 | DOI | MR
[19] Solitons and Infinite Dimensional Lie Algebras, Publ. RIMS, Kyoto Univ., Volume 19 (1983), pp. 943-1001 | DOI | MR | Zbl
[20] The -component hierarchy and representation theory, Integrability, topological solitons and beyond, J. Math. Phys., Volume 44 (2003) no. 8, pp. 3245-3293 | MR | Zbl
[21] Twisted Loop Group Orbit and Solutions of WDVV Equations, Internat. Math. Res. Notices, Volume 11 (2001), pp. 551-573 | MR | Zbl
[22] The construction of Frobenius Manifolds from KP tau-Functions, Commun. Math. Phys., Volume 205 (1999), pp. 587-616 | DOI | MR | Zbl
[23] Symmetric functions and Hall polynomials. Second edition., Oxford Mathematical Monographs, Oxford University Press, New York, 1995 | MR | Zbl
[24] Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients, The Painlevé property, one century later (CRM series in mathematical physics) (1999), pp. 35-76 | Zbl
[25] Picard and Chazy solutions to the Painlevé VI equation (Math. Annalen), Volume 321 (2001), pp. 131-169 | Zbl
[26] Prym varieties and soliton equations, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) (Adv. Ser. Math. Phys.), Volume 7 (1989), pp. 407-448 | Zbl
Cité par Sources :