[Sur la propriété de blocage fini]
On dit qu’un billard polygonal a la propriété de blocage fini si pour tout couple de points de il existe un nombre fini de points “bloquants” tels que toute trajectoire de billard de à rencontre l’un des . En généralisant notre construction d’un contre exemple à un théorème de Hiemer et Snurnikov, nous montrons que les seuls polygones réguliers qui ont la propriété de blocage fini sont les carrés, le triangle équilateral et l’hexagone. Puis nous étendons ce résultat aux surfaces de translation. Nous prouvons que les seules surfaces de Veech jouissant de la propritété de blocage fini sont les revêtements ramifiés du tore. Nous donnons aussi une condition suffisante locale pour qu’une surface de translation ne jouisse pas de la propriété de blocage fini. Cela nous permet de donner une classification complète pour les surfaces en forme de L ainsi que d’obtenir un résultat de densité dans l’espace des surfaces de translation en tout genre .
A planar polygonal billiard is said to have the finite blocking property if for every pair of points in there exists a finite number of “blocking” points such that every billiard trajectory from to meets one of the ’s. Generalizing our construction of a counter-example to a theorem of Hiemer and Snurnikov, we show that the only regular polygons that have the finite blocking property are the square, the equilateral triangle and the hexagon. Then we extend this result to translation surfaces. We prove that the only Veech surfaces with the finite blocking property are the torus branched coverings. We also provide a local sufficient condition for a translation surface to fail the finite blocking property. This enables us to give a complete classification for the L-shaped surfaces as well as to obtain a density result in the space of translation surfaces in every genus .
Keywords: Blocking property, polygonal billiards, regular polygons, translation surfaces, Veech surfaces, torus branched covering, illumination, quadratic differentials
Mot clés : propriété de blocage, billards polygonaux, polygones réguliers, surfaces de translation, surfaces de Veech, revêtement ramifié du tore, illumination, différentielles quadratiques
Monteil, Thierry 1
@article{AIF_2005__55_4_1195_0, author = {Monteil, Thierry}, title = {On the finite blocking property}, journal = {Annales de l'Institut Fourier}, pages = {1195--1217}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {4}, year = {2005}, doi = {10.5802/aif.2124}, zbl = {1076.37029}, mrnumber = {2157167}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2124/} }
TY - JOUR AU - Monteil, Thierry TI - On the finite blocking property JO - Annales de l'Institut Fourier PY - 2005 SP - 1195 EP - 1217 VL - 55 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2124/ DO - 10.5802/aif.2124 LA - en ID - AIF_2005__55_4_1195_0 ER -
%0 Journal Article %A Monteil, Thierry %T On the finite blocking property %J Annales de l'Institut Fourier %D 2005 %P 1195-1217 %V 55 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2124/ %R 10.5802/aif.2124 %G en %F AIF_2005__55_4_1195_0
Monteil, Thierry. On the finite blocking property. Annales de l'Institut Fourier, Tome 55 (2005) no. 4, pp. 1195-1217. doi : 10.5802/aif.2124. https://aif.centre-mersenne.org/articles/10.5802/aif.2124/
[Bos] Correspondence with Howard Masur (1986) (unpublished)
[Bou] Groupes et algèbres de Lie, Chap. 4, 5, 6, Masson, 1981 | MR | Zbl
[Cal] Veech surfaces and complete periodicity in genus (J. Amer. Math. Soc., to appear) | MR | Zbl
[Car] A brief introduction to buildings, Harmonic functions on trees and buildings (Contemp. Math.), Volume 206 (1997), pp. 45-77 | Zbl
[EO] Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., Volume 145 (2001) no. 1, pp. 59-103 | DOI | MR | Zbl
[Fo]
(1990) (Zadaqi Leningradskih Matematitcheskih Olimpiad, Leningrad)[HS] Polygonal billiards with small obstacles, J. Statist. Phys., Volume 90 (1998) no. 1,2, pp. 453-466 | MR | Zbl
[Kl] Is every polygonal region illuminable from some point?, Amer. Math. Monthly, Volume 76 (1969), pp. 80 | MR
[KMS] Ergodicity of billiard flows and quadratic differentials, Ann. Math., Volume 124 (1986) no. 2, pp. 293-311 | DOI | MR | Zbl
[Ko] Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) (Adv. Ser. Math. Phys.), Volume 24 (1997), pp. 318-332 | Zbl
[KW] Old and new unsolved problems in plane geometry and number theory, Math. Assoc. America, 1991 | MR | Zbl
[KZ] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | DOI | MR | Zbl
[Mc] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 | DOI | MR | Zbl
[Mo] A counter-example to the theorem of Hiemer and Snurnikov, J. Statist. Phys., Volume 114 (2004) no. 5,6, pp. 1619-1623 | MR | Zbl
[Mo2] Finite blocking property versus pure periodicity (Preprint)
[MT] Rational billiards and flat structures (Handbook on dynamical systems), Volume 1A (2002), pp. 1015-1089 | Zbl
[ST] Inhomogeneous Diophantine Approximation and Angular Recurrence for Polygonal Billiards, Mat. Sb., Volume 194 (2003) no. 2, pp. 129-144 | MR | Zbl
[To] Polygonal rooms not illuminable from every point, Amer. Math. Monthly, Volume 102 (1995) no. 10, pp. 867-879 | DOI | MR | Zbl
[Ve] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl
[Vo] Planar structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys, Volume 51 (1996) no. 5, pp. 779-817 | DOI | MR | Zbl
[ZK] Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975) no. 2, pp. 291-300 | MR | Zbl
[Zo] Private communication (2003)
Cité par Sources :