Soit une variété complexe compacte à bord et soit une grande puissance d’un fibré en droites hermitien holomorphe sur . Quand n’a pas de bord, les inégalités de Morse holomorphes de Demailly donnent des estimations asymptotiques des dimensions des groupes de cohomologie de Dolbeault à valeurs dans , en termes de la courbure de . On étend les inégalités de Demailly au cas où a un bord, en ajoutant un terme au bord exprimé comme une certaine moyenne de la courbure du fibré et de la courbure de Levi du bord. Nous donnons des exemples qui montrent que les inégalités sont optimales.
Let be a compact complex manifold with boundary and let be a high power of a hermitian holomorphic line bundle over When has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in in terms of the curvature of We extend Demailly’s inequalities to the case when has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the boundary. Examples are given that show that the inequalities are sharp.
Keywords: Line bundles, cohomology, harmonic forms, holomorphic sections, Bergman kernel
Mot clés : fibrés en droites, cohomologie, formes harmoniques, sections holomorphes, noyaux de Bergman
Berman, Robert 1
@article{AIF_2005__55_4_1055_0, author = {Berman, Robert}, title = {Holomorphic {Morse} {Inequalities} on {Manifolds} with {Boundary}}, journal = {Annales de l'Institut Fourier}, pages = {1055--1103}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {4}, year = {2005}, doi = {10.5802/aif.2121}, zbl = {1082.32001}, mrnumber = {2157164}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2121/} }
TY - JOUR AU - Berman, Robert TI - Holomorphic Morse Inequalities on Manifolds with Boundary JO - Annales de l'Institut Fourier PY - 2005 SP - 1055 EP - 1103 VL - 55 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2121/ DO - 10.5802/aif.2121 LA - en ID - AIF_2005__55_4_1055_0 ER -
%0 Journal Article %A Berman, Robert %T Holomorphic Morse Inequalities on Manifolds with Boundary %J Annales de l'Institut Fourier %D 2005 %P 1055-1103 %V 55 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2121/ %R 10.5802/aif.2121 %G en %F AIF_2005__55_4_1055_0
Berman, Robert. Holomorphic Morse Inequalities on Manifolds with Boundary. Annales de l'Institut Fourier, Tome 55 (2005) no. 4, pp. 1055-1103. doi : 10.5802/aif.2121. https://aif.centre-mersenne.org/articles/10.5802/aif.2121/
[1] Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France, Volume 91 (1963), pp. 1-38 | Numdam | MR | Zbl
[2] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Volume 90 (1962), pp. 193-259 | Numdam | MR | Zbl
[3] Symplectic Geometry, Dynamical systems IV (Encyclopaedia Math. Sci.), Volume 4 (2001), pp. 1-138
[4] Bergman kernels and local holomorphic Morse inequalities, Math Z., Volume 248 (2004) no. 2, pp. 325-344 | MR | Zbl
[5] Super Toeplitz operators on holomorphic line bundles (arXiv.org/ abs/math.CV/0406032, http://arxiv.org/abs/math.CV/0406032)
[6] Bergman kernels related to Hermitian line bundles over compact comlex manifolds, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[7] Inégalité de Morse pour la -cohomologie sur une variété non-compacte, Ann. Sci. École Norm. Sup, Volume 22 (1989), pp. 501-513 | Numdam | MR | Zbl
[8] Real hypersurfaces in complex manifolds, Acta Math., Volume 133 (1974), pp. 219-271 | DOI | MR | Zbl
[9] Champs magnétiques et inégalité de Morse pour la -cohomologie, Ann. Inst. Fourier, Volume 355 (1985), pp. 185-229 | Numdam | MR | Zbl
[10] Holomorphic Morse inequalities, Volume 2 (1989), pp. 93-114 | Zbl
[11] Introduction à la théorie de Hodge, Transcendental methods in algebraic geometry. Lectures given at the 3rd C.I.M.E. Session held in Cetraro, July 4-12, 1994 (Lecture Notes in Mathematics), Volume 1646 (1994), pp. 4-12
[12] A few remarks about symplectic filling, Geometry and topology, Volume 8 (2004) no. 6, pp. 277-293 | MR | Zbl
[13] Geometric bounds on the relative index, J. Inst. Math. Jussieu, Volume 1 (2002) no. 3, pp. 441465 | MR | Zbl
[14] The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies, 75, Princeton University Press, 1972 | MR | Zbl
[15] An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Differential Geom., Volume 29 (1989) no. 2, pp. 231-244 | MR | Zbl
[16] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994 | MR | Zbl
[17] Kähler hyperbolicity and -Hodge theory, J. Differential Geom., Volume 33 (1991) no. 1, pp. 263-292 | MR | Zbl
[18] Stability of embeddings for prseudoconcave surfaces and their boundaries, Acta Math., Volume 185 (2000) no. 2, pp. 161-237 | DOI | MR | Zbl
[19] estimates and existence theorems for the -operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[20] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, A series of modern surveys in Mathematics, 48, Springer-Verlag, Berlin, 2004 | MR | Zbl
[21] Asymptotic Morse inequalities for Pseudoconcave manifolds, Ann. Scuola. Norm. Sup. Pisa CL Sci., Volume 23-1 (1996) no. 4, pp. 27-55 | Numdam | MR | Zbl
[22] Existence of holomorphic sections and perturbation of positive line bundles over -concave manifolds (arXiv.org/abs/math.CV/0402041, http://arxiv.org/abs/math.CV/0402041)
[23] Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Manifolds (Minneapolis) (1965), pp. 242-256 | Zbl
[24] Real and complex analysis, McGraw-Hill Book Company, international edition, 1987 | MR | Zbl
[25] Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Workshop Bonn 1984 (Bonn, 1984) (Lecture Notes in Math.), Volume 1111 (1985), pp. 169-192 | Zbl
[26] A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom., Volume 19 (1984) no. 2, pp. 431-452 | MR | Zbl
[27] Differential analysis on complex manifolds, Graduate Texts in Mathematics, 65, Springer-Verlag, New York-Berlin, 1980 | MR | Zbl
[28] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692 | MR | Zbl
Cité par Sources :