Combinatorial construction of toric residues.
[Une construction combinatoire pour résidus toriques.]
Annales de l'Institut Fourier, Tome 55 (2005) no. 2, pp. 511-548.

Dans cet article nous étudions l’existence d’un élément explicite dont le résidu torique est égal à un. On peut trouver un tel élément si et seulement si les polytopes associés sont essentiels. Nous réduisons ce problème à l’existence d’une collection de partitions des points du réseau dans les polytopes qui satisfont une certaine condition combinatoire. Nous utilisons cette description pour résoudre le problème pour n=2 et pour tout n si les polytopes des diviseurs ont en commun un drapeau complet de faces. Ceci généralise des résultats antérieurs dans le cas où les diviseurs sont amples.

In this paper we investigate the problem of finding an explicit element whose toric residue is equal to one. Such an element is shown to exist if and only if the associated polytopes are essential. We reduce the problem to finding a collection of partitions of the lattice points in the polytopes satisfying a certain combinatorial property. We use this description to solve the problem when n=2 and for any n when the polytopes of the divisors share a complete flag of faces. The latter generalizes earlier results when the divisors were all ample.

DOI : 10.5802/aif.2106
Classification : 14M25, 52B20, 06A07
Keywords: Toric varieties, toric residues, semi-ample degrees, facet colorings, combinatorial degree
Mot clés : variétés toriques, résidus toriques, degrés semi-ample, coloriage de facettes, degré combinatoire

Khetan, Amit 1 ; Soprounov, Ivan 

1 University of Massachusetts, Department of Mathematics and Statistics, Amherst, MA 01003 (USA)
@article{AIF_2005__55_2_511_0,
     author = {Khetan, Amit and Soprounov, Ivan},
     title = {Combinatorial construction of toric residues.},
     journal = {Annales de l'Institut Fourier},
     pages = {511--548},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {2},
     year = {2005},
     doi = {10.5802/aif.2106},
     zbl = {1077.14073},
     mrnumber = {2147899},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2106/}
}
TY  - JOUR
AU  - Khetan, Amit
AU  - Soprounov, Ivan
TI  - Combinatorial construction of toric residues.
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 511
EP  - 548
VL  - 55
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2106/
DO  - 10.5802/aif.2106
LA  - en
ID  - AIF_2005__55_2_511_0
ER  - 
%0 Journal Article
%A Khetan, Amit
%A Soprounov, Ivan
%T Combinatorial construction of toric residues.
%J Annales de l'Institut Fourier
%D 2005
%P 511-548
%V 55
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2106/
%R 10.5802/aif.2106
%G en
%F AIF_2005__55_2_511_0
Khetan, Amit; Soprounov, Ivan. Combinatorial construction of toric residues.. Annales de l'Institut Fourier, Tome 55 (2005) no. 2, pp. 511-548. doi : 10.5802/aif.2106. https://aif.centre-mersenne.org/articles/10.5802/aif.2106/

[1] Ian Anderson A first course in combinatorial mathematics (2nd ed.), Oxford University Press, 1989 | MR | Zbl

[2] V. Batyrev; D. Cox On the Hodge structure of projective hypersurfaces in toric varieties, Duke J. Math., Volume 75 (1994), pp. 293-338 | MR | Zbl

[3] V. Batyrev; E. Materov Toric Residues and Mirror Symmetry, Moscow Math. J., Volume 2 (2002) no. 3, pp. 435-475 | MR | Zbl

[4] E. Cattani; D. Cox; A. Dickenstein Residues in Toric Varieties, Compositio Math., Volume 108 (1997) no. 1, pp. 35-76 | DOI | MR | Zbl

[5] E. Cattani; A. Dickenstein A global view of residues in the torus, J. Pure Appl. Algebra, Volume 117/118 (1997), pp. 119-144 | DOI | MR | Zbl

[6] E. Cattani; A. Dickenstein Planar Configurations of Lattice Vectors and GKZ-Rational Toric Fourfolds in 6 , J. Alg. Comb., Volume 19 (2004), pp. 47-65 | DOI | MR | Zbl

[7] E. Cattani; A. Dickenstein; B. Sturmfels Residues and Resultants, J. Math. Sci. Univ. Tokyo, Volume 5 (1998), pp. 119-148 | MR | Zbl

[8] E. Cattani; A. Dickenstein; B. Sturmfels Computing multidimensional residues (Progress in Math.) (1996), pp. 135-164 | Zbl

[9] E. Cattani; A. Dickenstein; B. Sturmfels Rational hypergeometric functions, Compositio Math., Volume 128 (2001), pp. 217-240 | DOI | MR | Zbl

[10] E. Cattani; A. Dickenstein; B. Sturmfels Binomial Residues, Ann. Inst. Fourier, Volume 52 (2002), pp. 687-708 | DOI | EuDML | Numdam | MR | Zbl

[11] D.A. Cox; A. Dickenstein Codimension theorems for complete toric varieties (to appear in Proc. AMS, math.AG/0310108) | MR | Zbl

[12] D.A. Cox The homogeneous coordinate ring of a toric variety, J. Alg. Geom., Volume 4 (1995), pp. 17-50 | MR | Zbl

[13] D.A. Cox Toric residues, Arkiv Mat., Volume 34 (1996), pp. 73-96 | DOI | MR | Zbl

[14] C. D'Andrea; A. Khetan Macaulay style formulas for toric residues (to appear in Compositio Math., math.AG/0307154) | MR | Zbl

[15] W. Fulton Introduction to Toric Varieties, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[16] I.M. Gelfand; M.M. Kapranov; A.V. Zelevinsky Discriminants, resultants, and multidimensional determinants, Birkhäuser Boston, Inc., Boston, 1994 | MR | Zbl

[17] O.A. Gelfond; A.G. Khovanskii Toric geometry and Grothendieck residues, Moscow Math. J., Volume 2 (2002) no. 1, pp. 99-112 | MR | Zbl

[18] I. Soprounov Residues and tame symbols on toroidal varieties, Compositio Math., Volume 140 (2004) no. 6, pp. 1593-1613 | MR | Zbl

[19] I. Soprounov Toric residue and combinatorial degree, Trans. Amer. Math. Soc., Volume 357 (2005) no. 5, pp. 1963-1975 | DOI | MR | Zbl

Cité par Sources :