P. Bérard et D. Meyer ont démontré une inégalité du type Faber-Krahn pour les domaines d'une variété compacte à courbure de Ricci positive. Nous démontrons des résultats de stabilité associés à cette inégalité.
P. Bérard and D. Meyer proved a Faber-Krahn inequality for domains in compact manifolds with positive Ricci curvature. We prove stability results for this inequality
Mot clés : géométrie riemannienne, distance de Gromov-Hausdorff, inégalité de Faber-Krahn, domaines convexes
Keywords: Riemannian Geometry, Gromov-Hausdorff distance, Faber-Krahn inequality, convex domains
Bertrand, Jérôme 1
@article{AIF_2005__55_2_353_0, author = {Bertrand, J\'er\^ome}, title = {Stabilit\'e de l'in\'egalit\'e de {Faber-Krahn} en courbure de {Ricci} positive}, journal = {Annales de l'Institut Fourier}, pages = {353--372}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {2}, year = {2005}, doi = {10.5802/aif.2101}, zbl = {1080.53032}, mrnumber = {2147894}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2101/} }
TY - JOUR AU - Bertrand, Jérôme TI - Stabilité de l'inégalité de Faber-Krahn en courbure de Ricci positive JO - Annales de l'Institut Fourier PY - 2005 SP - 353 EP - 372 VL - 55 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2101/ DO - 10.5802/aif.2101 LA - fr ID - AIF_2005__55_2_353_0 ER -
%0 Journal Article %A Bertrand, Jérôme %T Stabilité de l'inégalité de Faber-Krahn en courbure de Ricci positive %J Annales de l'Institut Fourier %D 2005 %P 353-372 %V 55 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2101/ %R 10.5802/aif.2101 %G fr %F AIF_2005__55_2_353_0
Bertrand, Jérôme. Stabilité de l'inégalité de Faber-Krahn en courbure de Ricci positive. Annales de l'Institut Fourier, Tome 55 (2005) no. 2, pp. 353-372. doi : 10.5802/aif.2101. https://aif.centre-mersenne.org/articles/10.5802/aif.2101/
[1] Metrics of positive Ricci curvature with large diameter, Manuscripta Math., Volume 68 (1990) no. 4, pp. 405-415 | EuDML | MR | Zbl
[2] Stability results for the first eigenvalue of the Laplacian on domains in space forms, J. Math. Anal. Appl., Volume 267 (2002) no. 2, pp. 760-774 | DOI | MR | Zbl
[3] Inégalités isopérimétriques et applications, Ann. Sci. École Norm. Sup., Volume 15 (1982) no. 3, pp. 513-541 | EuDML | Numdam | MR | Zbl
[4] Pincement spectral en courbure de Ricci positive (à paraître) | Zbl
[5] Pincement spectral en courbure positive (2003) (Thèse de doctorat)
[6] Spectra of domains in compact manifolds, J. Funct. Anal., Volume 30 (1975) no. 2, pp. 198-222 | MR | Zbl
[7] Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., Orlando, FL, 1984 | MR | Zbl
[8] Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math., Volume 144 (1996) no. 1, pp. 189-237 | DOI | MR | Zbl
[9] Eigenvalue comparison theorems and its geometric applications, Math. Z., Volume 143 (1975) no. 3, pp. 289-297 | DOI | EuDML | MR | Zbl
[10] Inégalités isopérimétriques, courbure de Ricci et invariants géométriques, C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983) no. 8, pp. 365-368 | MR | Zbl
[11] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser Boston Inc., Boston MA | MR | Zbl
[12] A pinching theorem for homotopy spheres, J. Amer. Math. Soc., Volume 3 (1990) no. 3, pp. 671-677 | DOI | MR | Zbl
[13] A generalized sphere theorem, Ann. Math., Volume 106 (1977) no. 2, pp. 201-211 | MR | Zbl
[14] Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace operator (Proc. Sympos. Pure Math.), Volume XXXVI (1979), pp. 205-239 | Zbl
[15] Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., Volume 18 (1975), pp. 27-59 | DOI | MR | Zbl
[16] Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977) no. 3, pp. 459-472 | DOI | MR | Zbl
Cité par Sources :