[Une application de la théorie classique des invariants dans les mélanges non-paramétriques]
On sait que l'identifiabilité des mélanges multivariés se réduit à une question de géométrie algébrique. Nous résolvons cette question en étudiant des générateurs particuliers dans l'anneau des polynômes à variables vectorielles, invariants sous l'action du groupe symétrique.
It is known that the identifiability of multivariate mixtures reduces to a question in algebraic geometry. We solve the question by studying certain generators in the ring of polynomials in vector variables, invariant under the action of the symmetric group.
Keywords: Mixture model, birational, invariant
Mot clés : modèle de mélange, birationel, invariant
Elmore, Ryan 1 ; Hall, Peter  ; Neeman, Amnon 
@article{AIF_2005__55_1_1_0, author = {Elmore, Ryan and Hall, Peter and Neeman, Amnon}, title = {An application of classical invariant theory to identifiability in nonparametric mixtures}, journal = {Annales de l'Institut Fourier}, pages = {1--28}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2087}, zbl = {02162462}, mrnumber = {2141286}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2087/} }
TY - JOUR AU - Elmore, Ryan AU - Hall, Peter AU - Neeman, Amnon TI - An application of classical invariant theory to identifiability in nonparametric mixtures JO - Annales de l'Institut Fourier PY - 2005 SP - 1 EP - 28 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2087/ DO - 10.5802/aif.2087 LA - en ID - AIF_2005__55_1_1_0 ER -
%0 Journal Article %A Elmore, Ryan %A Hall, Peter %A Neeman, Amnon %T An application of classical invariant theory to identifiability in nonparametric mixtures %J Annales de l'Institut Fourier %D 2005 %P 1-28 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2087/ %R 10.5802/aif.2087 %G en %F AIF_2005__55_1_1_0
Elmore, Ryan; Hall, Peter; Neeman, Amnon. An application of classical invariant theory to identifiability in nonparametric mixtures. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 1-28. doi : 10.5802/aif.2087. https://aif.centre-mersenne.org/articles/10.5802/aif.2087/
[1] Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., Volume 355 (2002), pp. 263-285 | DOI | MR | Zbl
[2] Erratum to ``Ranks of tensors, secant varieties of Segre varieties and fat points'', Linear Algebra Appl., Volume 367 (2003), pp. 347-348 | DOI | MR | Zbl
[3] Algebraic geometry of Bayesian networks (e-print, http://arXiv.org/abs/math.AG/0301255)
[4] Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhäuser, Boston, MA, 1994 | MR | Zbl
[5] Exploratory latent structure analysis using both identifiable and unidentifiable models, Biometrika, Volume 61 (1974), pp. 215-231 | DOI | MR | Zbl
[6] Nonparametric estimation of component distributions in a multivariate mixture, Ann. Statist., Volume 31 (2003), pp. 201-224 | DOI | MR | Zbl
[7] Nonparametric inference in multivariate mixtures (To appear)
[8] On the ideals of secant varieties to Segre varieties (e-print, http://arXiv.org/abs/math.AG/0311388) | Zbl
[9] Mixture Models: Theory Geometry and Applications (1995) | Zbl
[10] Finite Mixture Models, John Wiley & Sons, 2000
[11] The field of multisymmetric functions, Proc. Amer. Math. Soc., Volume 19 (1968), pp. 764-765 | MR | Zbl
[12] On the normality of the Chow variety of positive -cycles of degree in an algebraic variety (Mem. Coll. Sci. Univ. Kyoto A. Math.), Volume 29 (1955), pp. 165-176 | Zbl
[13] Zero cycles in , Advances in Math., Volume 89 (1991), pp. 217-227 | DOI | MR | Zbl
[14] Vorlesungen über Algebra, Teubner Verlag, Leipzig, 1896 | JFM
[15] Identifiability of mixtures, Ann. Math. Statist., Volume 32 (1961), pp. 244-248 | DOI | MR | Zbl
[16] Identifiability of finite mixtures, Ann. Math. Statist., Volume 34 (1963), pp. 1265-1269 | DOI | MR | Zbl
[17] Statistical Analysis of Finite Mixture Distributions, John Wiley \& Sons, 1985 | MR | Zbl
[18] The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton N.J., 1939 | MR | Zbl
[19] On the identifiability of finite mixtures, Ann. Math. Statist., Volume 39 (1968), pp. 209-214 | DOI | MR | Zbl
Cité par Sources :