A virtual string is a scheme of self-intersections of a closed curve on a surface. We study algebraic invariants of strings as well as two equivalence relations on the set of strings: homotopy and cobordism. We show that the homotopy invariants of strings form an infinite dimensional Lie group. We also discuss connections between virtual strings and virtual knots.
Une corde virtuelle est un schéma d'auto-intersections d'une courbe fermée sur une surface. Nous étudions les invariants algébriques des cordes virtuelles ainsi que deux relations d'équivalence sur l'ensemble des cordes : homotopie et cobordisme. Nous montrons que les invariants d'homotopie de cordes forment un groupe de Lie de dimension infinie. Les rapports avec les noeuds virtuels sont également abordés.
Keywords: Virtual strings, virtual knots, surfaces, cobordism, skew-symmetric matrices, Lie cobracket
Mot clés : cordes virtuelles, noeuds virtuels, surfaces, cobordisme, matrices antisymétriques, co-crochet de Lie
Turaev, Vladimir 1
@article{AIF_2004__54_7_2455_0, author = {Turaev, Vladimir}, title = {Virtual strings}, journal = {Annales de l'Institut Fourier}, pages = {2455--2525}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {7}, year = {2004}, doi = {10.5802/aif.2086}, zbl = {1066.57022}, mrnumber = {2139700}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2086/} }
TY - JOUR AU - Turaev, Vladimir TI - Virtual strings JO - Annales de l'Institut Fourier PY - 2004 SP - 2455 EP - 2525 VL - 54 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2086/ DO - 10.5802/aif.2086 LA - en ID - AIF_2004__54_7_2455_0 ER -
Turaev, Vladimir. Virtual strings. Annales de l'Institut Fourier, Volume 54 (2004) no. 7, pp. 2455-2525. doi : 10.5802/aif.2086. https://aif.centre-mersenne.org/articles/10.5802/aif.2086/
[Ca1] Classifying immersed curves, Proc. Amer. Math. Soc., Volume 111 (1991) no. 1, pp. 281-287 | DOI | MR | Zbl
[Ca2] Closed curves that never extend to proper maps of disks, Proc. Amer. Math. Soc., Volume 113 (1991) no. 3, pp. 879-888 | DOI | MR | Zbl
[CR] On the algebraic structure of link-diagrams on a -dimensional surface, Comm. Math. Phys., Volume 138 (1991) no. 1, pp. 137-173 | DOI | MR | Zbl
[CSK] Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications, Volume 11 (2002) no. 3, pp. 311-322 | DOI | MR | Zbl
[CW] Plombages de rubans et problème des mots de Gauss, Exposition. Math., Volume 12 (1994) no. 1, pp. 53-77 | MR | Zbl
[CW] Erratum "Plombages de rubans et problème des mots de Gauss", Exposition. Math., Volume 12 (1994) no. 2, pp. 124 | MR | Zbl
[Fr] The folded ribbon theorem. A contribution to the study of immersed circles, Trans. Amer. Math. Soc., Volume 141 (1969), pp. 271-303 | DOI | MR | Zbl
[GPV] Finite-type invariants of classical and virtual knots, Topology, Volume 39 (2000) no. 5, pp. 1045-1068 | DOI | MR | Zbl
[HK] On Filamentations and Virtual Knots, Topology and Its Applications, Volume 134 (2003), pp. 23-52 | DOI | MR | Zbl
[Ja] Letter to the author (21-11-1991)
[Ka] Virtual knots theory, European J. Combin., Volume 20 (1999) no. 7, pp. 663-690 | DOI | MR | Zbl
[Pr] Quantum group of links in a handlebody, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemp. Math.), Volume 134 (1992), pp. 235-245 | Zbl
[Se] Lie algebras and Lie groups, Lecture Notes in Math., 1500, Springer-Verlag, Berlin, 1992 | MR | Zbl
[Tu1] The Yang-Baxter equation and invariants of links, Invent. Math., Volume 92 (1988) no. 3, pp. 527-553 | DOI | MR | Zbl
[Tu2] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4), Volume 24 (1991) no. 6, pp. 635-704 | Numdam | MR | Zbl
Cited by Sources: