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VIRTUAL STRINGS

by Vladimir TURAEV

Contents.

1. Introduction.

A virtual string is a scheme of self-intersections of a generic oriented
closed curve on an oriented surface. More precisely, a virtual string of
rank m &#x3E; 0 is an oriented circle with 2m distinguished points partitioned
into m ordered pairs. These m ordered pairs of points are called arrows
of the virtual string. An example of a virtual string of rank 3 is shown
on Figure 1 where the arrows are represented by geometric vectors.

A (generic oriented) closed curve on an oriented surface gives rise to
an "underlying" virtual string whose arrows correspond to the self-crossings

Keywords: Virtual strings - Virtual knots - Surfaces - Cobordism - Skew-symmetric
matrices - Lie cobracket.

Math. classification: 57M99.
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Figure 1. A virtual string of rank 3

of the curve. The usual homotopy of curves on surfaces suggests a notion of
homotopy for strings. The homotopy of curves in 3-manifolds with boundary
suggests a notion of cobordism for strings. The main objective of the theory
of virtual strings is a study (and eventually classification) of their homotopy
classes and cobordism classes. To this end, we introduce algebraic invariants
of virtual strings, specifically, a one-variable polynomial u and a so-called
based matrix. We formulate obstructions to homotopy/cobordism of strings
in terms of these invariants. This leads us to a purely algebraic study of
analogues of homotopy and cobordism for skew-symmetric matrices.

As an instance of cobordism, we call a string slice if it can be realized

by a closed curve on the boundary of an orientable 3-manifold M that is
contractible in M. We formulate obstructions to the sliceness of a string in
terms of the polynomial u and the based matrix.

We introduce a natural Lie cobracket in the free abelian group

generated by the homotopy classes of strings. Dually, the abelian group of
Z-valued homotopy invariants of strings becomes a Lie algebra. This Lie
algebra is integrated into an infinite dimensional Lie group. This Lie group
gives rise to further algebraic objects including a Hopf algebra structure on
the (commutative) polynomial algebra generated by the homotopy classes
of strings.

Virtual strings are closely related to virtual knots introduced by
L. Kauffman [Ka]. In particular, the term "virtual knots" suggested to us
the term virtual strings. Virtual knots can be defined as equivalence classes
of arrow diagrams which are just virtual strings whose arrows are provided
with signs + or . Forgetting these signs, we obtain a map from the set
of virtual knots into the set of homotopy classes of virtual strings. We give
a more elaborate construction which associates with each virtual knot a

polynomial expression in virtual strings with coefficients in the ring Q[z].
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This leads to an isomorphism between a "skein algebra" of virtual knots
and a polynomial algebra generated by the homotopy classes of strings.

We also study "open strings" which are schemes of self-intersections
of generic paths on surfaces.

As an application of this work, we obtain a new interesting relation
of cobordism for skew-symmetric matrices and a homeomorphism invariant
of knots in cylinders over oriented surfaces with values in the polynomial
ring Q [z , t].

A number of ideas and results of this paper have predecessors in
the literature. The homotopy for virtual strings can be defined in terms
of the stable equivalence of curves on surfaces introduced by J.S. Carter,
S. Kamada, and M. Saito [CSK]. These authors also defined the notions of
cobordism and sliceness for curves on surfaces which is essentially equivalent
to our cobordism and sliceness for strings. Carter [Ca2] showed that there
are closed curves on closed oriented surfaces that bound no singular disks
in 3-manifolds bounded by these surfaces. In our language this means that
there are non-slice strings (see also [HK]).

The main novelty of the present paper lies in the introduction of new
homotopy invariants of strings and new operations on the homotopy classes
of strings.

The organization of the paper should be clear from the contents above.

2. Generalities on virtual strings.

2.1. Definitions.

We give here a formal definition of a virtual string. For an

integer m &#x3E; 0, a virtual string cx of rank m (or briefly a string) is an oriented
circle, S, called the core circle of cx, and a distinguished set of 2m distinct
points of S partitioned into m ordered pairs. We call these m ordered pairs
of points the arrows of a. The set of arrows of a is denoted arr(a). The
endpoints a, b E ~S’ of an arrow (a, b) E arr(cx) are called its tail and head,
respectively. The 2m distinguished points of ,S are called the endpoints of a.

The string formed by an oriented circle and an empty set of arrows
is called a trivial virtual string. An example of a virtual string of rank 3 is
shown on Figure 1.
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By a homeomorphism of two virtual strings, we mean an orientation-
preserving homeomorphism of the core circles transforming the set of arrows
of the first string onto the set of arrows of the second string. Two virtual
strings are homeomorphic if they are related by a homeomorphism. Clearly,
homeomorphic strings have the same rank.

By abuse of language, the homeomorphism classes of virtual strings
will be also called virtual strings.

2.2. From curves to strings.

By a surface, we mean a smooth oriented 2-dimensional manifold. By
a closed curve on a surface ~, we mean a generic smooth immersion w of an
oriented circle ~S’ into E. Recall that a smooth map ,S’ -~ ~ is an immersion

if its differential is non-zero at all points of S. An immersion w : ,S’ --~ ~ is

generic if ~ (c,~-1 (x) )  2 for all x E ~, the set fx E ~ ~ ~ (c~-1 (x) ) = 21
is finite, and all its points are transverse intersections of two branches. Here
and below the symbol #(A) denotes the cardinality of a set A. The points
x E E such = 2 are called double points or crossings of w.

A closed ,S’ -~ ~ gives rise to an underlying virtual string 
The core circle of aw is ,S’ and the arrows of 0152w are all ordered pairs a, b E S
such that cv(a) = w(b) and the pair (a positive tangent vector of w at a, a
positive tangent vector of w at b) is a positive basis in the tangent space
of w (a) . For instance, the underlying string of a simple closed curve on E
is a trivial virtual string.

We say that a virtual string is realized by a closed curve w: ? 2013~ E
if it is homeomorphic to aw . As we shall see below, every virtual string can
be realized by a closed curve on a surface.

2.3. Homotopy of strings.

The usual homotopy of closed curves on a surface suggests to introduce
a relation of homotopy for virtual strings. Observe first that two homotopic
curves on a surface can be related by a finite sequence of the following
"elementary" moves (and the inverse moves):

(a) a local move adding a small curl to the curve;
(b) a local move pushing a branch of the curve across another branch

and creating two new double points;

(c) a local move pushing a branch of the curve across a double point;
(d) ambient isotopy in the surface.
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The move (a) has two forms (a)+ and (a)- depending on whether the
curl lies on the left or the right of the curve where the left and the right
are determined by the direction of the curve and the orientation of the
surface. Considered up to ambient isotopy, the move (b) has three forms
depending on the direction of the two branches. Similarly, considered up
to ambient isotopy, the move (c) has two forms (c)+ and (c) - depending
on the direction of the branches. Using the standard braid generators
Ul, U2 on three strands we can encode this move as 

where the over/undercrossing information is forgotten. The moves (c)+
and (c) - are obtained by directing (before and after the move) the first
and third strands up and the second strand up or down, respectively. It is
easy to see that (c)+, (c)- can be obtained from each other using ambient
isotopy, moves (b), and inverses to (b). Similarly, the moves (a)+,(a) can
be obtained from each other using ambient isotopy, moves (b), (c)-, and
inverses to (b). Thus the moves (a)-, (b), (c)- generate all the other moves.

It is clear that ambient isotopy of a closed curve does not change
the underlying virtual string. We now describe the analogues for virtual
strings of the moves (a) -, (b), (c) - . In this description and in the sequel,
by an arc on an oriented circle S we mean an embedded arc on S. The
orientation of ,S’ induces an orientation of all arcs on S. For two distinct

points a, b E S, we write ab for the unique oriented arc in ,S’ which begins
in a and terminates in b. Clearly, S = ab U ba and ab n ba = ~}.

Let cx be a virtual string with core circle S. Pick two distinct points
a, b E S’ such that the arc ab C ,S’ is disjoint from the set of endpoints of a.
The move (a)s, where s stands for "string", adds to a the pair (a, b). This
amounts to attaching a small arrow to S such that the arc in ,S’ leading from
its tail to its head is disjoint from the endpoints of a. The move (b)s acts
on cx as follows. Pick two arcs on S’ disjoint from each other and from the
endpoints of cx. Let a, a’ be the endpoints of the first arc (in an arbitrary
order) and b, b’ be the endpoints of the second arc. The move (b) 8 adds to a
two arrows (a, b) and (b’, a’ ) . (This move has four forms depending on the
two possible choices for a and two possible choices for b. However, two of
these forms of (b) 8 are equivalent.) The move applies to a when a has
three arrows (a+ , b) I (b+ , c) , (c+ , a) where a, a+, b, b+, c, c+ E ,S’ such that

the arcs aa+, bb+, cc+ are disjoint from each other and from the other
endpoints of cx. The move (c)s replaces the arrows (a+, b), (b+, c), (c+, a)
with the arrows i

We say that two virtual strings are homotopic if they can be related

by a finite sequence of homeomorphisms, the homotopy moves (a)8’ (b)8’ (C)8’
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and the inverse moves. A virtual string homotopic to a trivial virtual string
is said to be homotopically trivial. For instance, as it follows directly from
the definitions, all virtual strings of rank  2 are homotopically trivial.

It is clear from what was said above that the underlying virtual strings
of homotopic closed curves on a surface are themselves homotopic.

2.4. Transformations of strings.

For a string cx, we define the opposite string a- to be cx with opposite
orientation on the core circle. The inverse string a- is obtained from a

by reversing all its arrows. On the level of closed curves on surfaces,
these two transformations correspond to traversing the same curve in the
opposite direction and to inverting the orientation of the ambient surface,
respectively. If two strings are homotopic, then their opposite (resp. inverse)
strings are homotopic.

One can raise a number of questions concerning the transformations
cx H cx-, a H a, oz F-4 For instance, one can ask whether there is a

string cx that is not homotopic to c~- (resp. to 5, ~"). Below we will answer
this question in the positive.

A virtual string a with core circle ,S’ is a product of virtual strings
al and a2 if there are disjoint arcs albl, a2b2 C ~S’ such that each arrow

of a has both endpoints on either alb, or on a2b2 and the string formed
by ,S’ and the arrows of cx with endpoints on aibi is homeomorphic to ai
for i = 1, 2. One can ask whether the product is a well-defined operation on
strings (at least up to homotopy) and whether it is commutative. Below we
will answer these questions in the negative.

2.5. Geometric invariants of strings.

We define three geometric characteristics of strings: the genus, the

homotopy genus, and the homotopy rank. The genus g(a) of a string cut is

the minimal integer g &#x3E; 0 such that a can be realized by a closed curve on a
surface of genus g. The homotopy genus hg(a) is the minimal integer g &#x3E; 0

such that cx is homotopic to a string of genus g. The homotopy rank hr(a) is
the minimal integer m &#x3E; 0 such that cx is homotopic to a string of rank m.
For example, if a is a trivial string, then g(a) = hg(a) = hr(a) = 0.
It is clear that the homotopy genus and the homotopy rank are homotopy
invariants of strings. Below we compute the genus explicitly and show that
it is not a homotopy invariant.
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The numbers g(a), hg(a), hr(cx) are preserved under the transforma-

2.6. Encoding of strings.

There are two simple methods allowing to encode virtual strings in
a compact way. Although we do not use these methods in this paper, we
briefly describe them for completeness.

1) Consider a finite set E consisting of m elements and its disjoint
copy E+ = E E ~ . Let yl , y2 , ... , 2~2m be a sequence of elements

of the set E U E+ in which every element appears exactly once. (Such
a sequence determines a total order in E U E+ and vice versa.) The
sequence yl , y2, ... , y2m defines a string of rank m whose underlying circle

with right-handed orientation on R and whose m arrows
are the pairs (a, b) such that a, b ~ {1,2,..., C S, ya E E, and
yb = ya E E+. Any string can be encoded in this way. For instance, the
string drawn in Figure 1 is encoded by the sequence x+, y, z+, X, z, y+
where E 

2) By Section 2.2, virtual strings can be encoded by closed curves on
surfaces. This has an extension similar to Kauffman’s graphical encoding
of virtual knots in [Ka]. Namely, consider a (generic) closed curve on a
surface and suppose that some of its crossings are marked as "virtual".
Take the string of this curve as in Section 2.2 and forget all its arrows

corresponding to virtual crossings. It is easy to see that every virtual string
can be obtained in this way from a closed curve in R 2 with virtual crossings.
This yields a graphical encoding of strings by plane curves with virtual
crossings. The relation of homotopy for strings has a simple description in
this language: it is generated by the moves shown in [Ka], Figure 2 (where
the over/undercrossing information should be forgotten).

2.7. Remarks.

1) We can point out certain classes of closed curves on surfaces whose
underlying virtual strings are homotopically trivial. Since all closed curves
on ,S’2 are contractible, their underlying strings are homotopically trivial.
Therefore the same is true for closed curves on any subsurface of ,S’2, i.e., on
any surface of genus 0. In particular, all closed curves on an annulus have

homotopically trivial underlying strings. Since each closed curve on a torus
can be deformed into an annulus, its underlying string is homotopically
trivial. The same holds for closed curves on a torus with holes.
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2) The move (a) S has a version (a)~ which is defined as (a) s above but
adds the arrow (b, a) rather than (a, b). This move underlies the move (a) ~
on closed curves. The move (a)~ preserves the homotopy class of a string.
Indeed, it can be expressed as a composition of (b)S, (c)s, and an inverse
to (a) s .

3) The move (c) S has a version (c)~ which applies to a string
when it has three arrows (a, b), (a+, c), (b+, c+) such that the arcs

aa+, bb+, cc+ are disjoint from each other and from the other endpoints
of the string. The move (c)+ replaces these three arrows with the arrows
(a+, b+), (a, c+), (b, c). This move underlies the move (c)+ on closed curves.
The move (c)~ can be expressed as a composition of (c) S and (b)s.

3. Polynomial u.

3.1. Invariants 

Let a be a virtual string with core circle S. Each arrow e = (a, b)
in arr(a) splits ,S’ into two arcs ab and ba. We say that an arrow f = (c, d)
of a (distinct from e) links e if one of its endpoints lies on ab and the other
one lies on ba. More precisely, f = (c, d) links e positively (resp. negatively)
if c E ab, d E ba (respectively, if c E ba, d E ab). If f does not link e, then e
and f are unlinked. Let n(e) E Z be the algebraic number of arrows of a
linking e, i.e., the number of arrows of a linking e positively minus the
number of arrows of cut linking e negatively.

It is easy to trace the behaviour of n(e) under the homotopy moves
(a)s, (b)s, (c)s on a. The move (a)s adds an arrow eo with n(eo) = 0 and
keeps n(e) for all other arrows. The move (b)s adds two arrows el, e2
with n(el) = -n(e2) and keeps n(e) for all other arrows. Consider the

move (c) S and use the notation of Section 2.3. It is obvious that for all

arrows e preserved under the move, the number n(e) is also preserved. Each
arrow e = (a+, b), (b+, c), (c+, a) occuring before the move gives rise to
an arrow e’ = (a, b+), (b, c+), (c, a+), respectively, occuring after the move.
We claim that n(e) = n(e’). Consider for concreteness e = (a+, b). Note
that the points c, c+ lie either on ab or on ba. Suppose that c, c+ E ab. Then
the arrows (b+, c) and (c+, a) contribute 1 and -1 to n(e), respectively,
while the corresponding arrows (b, c+) and (c, a+) contribute 0 to n(e’).
All other arrows contribute the same to n(e) and n(e’). Hence n(e) = n(e’).
If c, c~ E ba, then the arrows (b+, c) and (c+, a) contribute 0 to n(e) while
the corresponding arrows (b, c+) and (c, a+) contribute -1 and 1 to n(e’),
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respectively. All other arrows contribute the same to n(e) and n(e’).
Hence n(e) = n(e’).

For an integer &#x3E; 1, set

It is clear from what was said above that is preserved under the
moves ( a) s, (b) s, (c) s. In other words, is a homotopy invariant of cx.
Clearly, uk (a) = 0 for all greater than or equal to the rank of a. If a is
homotopically trivial, then Uk (a) = 0 for all k &#x3E; 1.

3.2. Polynomial 

We can combine the invariants ~c~ of a virtual string cx into a

polynomial

where t is a variable. The free term of this polynomial is always 0 and
its degree is bounded from above by m - 1 where m is the rank of a.
This polynomial is a homotopy invariant of a. If cx is homotopically trivial,
then u(a) - 0. (The converse is not true, as we shall see below.) The
polynomial u(a) yields an estimate for the homotopy rank hr(cx) of a
defined in Section 2.5:

We can rewrite u(cx) as follows:

where sign(n) = 1 for positive n E Z and sign( n) = -1 for negative n E Z.
Therefore

Substituting t = 1, we obtain

The last equality follows from the fact that if an arrow f links an arrow e

positively, then e links f negatively.
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3.3. Examples.

1) For positive integers p, q, we define to be the lattice-looking
virtual string formed by a Euclidean circle in R 2 with counterclockwise
orientation, p disjoint vertical arrows el , ... , ep directed upward and
numerated from left to right, and q disjoint horizontal arrows ep+ 11 ... , ep+q
crossing el, ... , ep from right to left and numerated from bottom to top.
(Here we identify arrows with geometric vectors in R 2 connecting two
points of the core circle; the numeration of the arrows is compatible with
the counterclockwise order of their tails.) Clearly, n(ei) = q for i = 1, ... , p
and n (ep+j) = -p for j = 1,..., q. Hence u(ap,q) = ptq - qtp. We conclude
that the strings are pairwise non-homotopic and homotopically
non-trivial. The string al,l is homotopically trivial: it is obtained from a

trivial string by (b)s. For p &#x3E; 2, we have u(ap,p) = 0. However ctp,p is

homotopically non-trivial as will be shown below.

It follows from the definitions that and

Thus the string a = cxp,q with p ~ q is not homotopic to a - . .

Formula (3.2.1 ) implies that the strings ap, 1 and with p &#x3E; 2 have

minimal rank in their homotopy classes. We shall prove below that the
same holds for all cxp,q except a1,1.

2) A permutation a of the set f 1, 2,..., ml gives rise to a virtual
string au of rank m as follows. Let the unit

circle with counterclockwise orientation. For i = 1, ... , m, let ai (resp. bi)
be the point of ,S’1 with real part (i - 1) /m and negative (resp. positive)
imaginary part. Then au is formed by ,S’1 and the m arrows, 
For the i-th arrow ei = (ai, b~(Z) ),

This allows us to compute the polynomial directly from a. This

example generalizes the previous one since = cta for the permutation a
of the set {1, 2,... p + ql given by

3.4. Properties of u.

We point out a few simple properties of the polynomial u. For a
virtual string a, we have u(cx) - u(~x). This follows from the fact that if
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two arrows are linked positively (resp. negatively), then the reversed arrows
are also linked positively (resp. negatively). The transformation a H a-
transforms positively linked pairs of arrows into negatively linked pairs and
vice versa. Therefore u(a-) = -u(a). As an application, we observe that
if 0, then cx is not homotopic to a-, a-.

It is obvious that if a string cx is a product of strings a1 and Ce2, then
u(cx) = u(al) + u(a2).

THEOREM 3.4.1. - An integral polynomial u(t) can be realized as the
u-polynomial of a virtual string if and only if u(o) = u’(1) = 0.

Proof. We need only to prove the sufficiency of the condition
~(0) = u’ ( 1 ) = 0. The proof goes by induction on the degree of u. If this
degree is  1, then u = 0 is realized by a trivial virtual string. Assume
that our claim is true for polynomials of degree  m where m &#x3E; 2.

Let u(t) be a polynomial of degree m with highest term where a E Z

and a ~ 0. Then v(t) = u(t) - a(tm - mt) is a polynomial of degree  m
with ~(0) = v’ ( 1 ) - 0. By the inductive assumption, v(t) is realizable as

the u-polynomial of a string. By Example 3.3, the polynomial mt

is also realizable. Taking a product of strings we observe that the sum
of realizable polynomials is realizable. Hence for a &#x3E; 0, the polynomial
u(t) = v(t) + a(tm - mt) is realizable. If a  0, then this argument shows

that -u(t) is realizable by a string, cx. Then u(t) is realized by a-. D

3.5 Computation for curves.

We compute the polynomial u for the string a = aw underlying a
closed curve w : S 2013~ E on a surface ~. The computation goes in terms of
the homological intersection form B : H1 (~) x HI (~) ~ ~ determined by
the orientation of ~. Here and below HI (~) = HI (E;7~).

Let e = (a, b) be an arrow of cx. Then w (a) = w(b) so that w transforms
the arcs ab, ba C S’ into loops in E. Set [e] = [w (ab) ] E 
and [e]* = [w(ba)] E H1 (~) where the square brackets on the right-hand
side stand for the homology class of a loop. We compute the intersection
number B(~e~, [e] *) E Z. The loops cv(ab), w (ba) intersect transversely except
at their common origin = w (b). Drawing a picture of w (ab), w (ba) in a
neighborhood of w(a) = w(b), one observes that a small deformation makes
these loops disjoint in this neighborhood. The transversal intersections
of úJ( ab), w(ba) bijectively correspond to the arrows of c~ linked with e,
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i.e., the arrows connecting an interior point of ab with an interior point
of ba. The intersection sign at such an intersection is --~ 1 if the tail of the

corresponding arrow lies on ab and is -1 otherwise. Adding these signs, we
obtain that B([e], [e]*) = n(e). This formula can be rewritten in a more
convenient form. Set s = [w] = [w(S)] E Hl(~). Observe that s = [e] + [e]*
and therefore

Thus

Therefore for any

and

Using the bijective correspondence between the set arr(cx) and the set v/1 (w)
of double points of w, we obtain

where for x E ~o (w), we let [0, 1] - E be the loop beginning at .r

and following along w until the first return to x and such that the pair
(a positive tangent vector of wx at 0, a positive tangent vector of úJx at 1)
is a positive basis in the tangent space of x.

3.6. Coverings and higher polynomials.

The polynomial u gives rise to a family of polynomial invariants of
strings numerated by sequences of positive integers. Their construction is
based on the notion of a covering for strings. Let cx be a string with core
circle S and r &#x3E; 1 be an integer. Let be the string formed by Sand
the arrows e E arr(cx) such that n(e) E rZ. We call the r-th covering
of a. If a underlies a closed curve w : ,S’ -~ ~ on a surface E, then 
underlies a lift of a to the r-fold covering of E induced by the cohomology
class in dual to [w] E HI (~). Note that a(I) = a.
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LEMMA 3.6.1. - If strings a and j3 are homotopic, then is

homotopic to j3( r) for all r &#x3E; 1.

Proof. If a is obtained from j3 by the homotopy move (a)s,
then the additional arrow e verifies n(e) = 0 so that a(r) is obtained

from ~3~r&#x3E; by the move (a) . If cx is obtained from j3 by the move (b)s,
then the additional arrows el, e2 verify n(el) - -n(e2). If n(el) E rZ,
then a~r~ is obtained from j3(r) by (b)s; otherwise = ~3~’’~ . Let a

be obtained from j3 by the move (c)s replacing three arrows e-1, e2, e-3

by ei, e2, e3. It was shown above that n(e’) = n(ei) for i = 1, 2, 3. It is

easy to check that n(el) -~ n(e2) + n(e3) - 0. Three cases may occur:

the numbers are divisible by r; one of these numbers
is divisible by r and the other two are not; neither of these numbers is
divisible by r. In the first case is obtained from j3(r) by (c)s. In the
second and third cases = /3(r). This implies the claim of the lemma. n

Iterating the coverings, we can define for a string a and a finite
sequence of positive integers rl,..., rk, a string

Set

The results above imply that this polynomial is a homotopy invariant of a.

3.7. Exercises.

1) Verify that all virtual strings of rank 3 are either homotopically
trivial or homeomorphic to a1,2, a2,1.

2) For an integer r &#x3E; 1 and a virtual string a, define a virtual

string r ’ cx as follows. Identifying the core circle of a with ,S’1 C C we can
present arrows of cx by geometric vectors with endpoints on 81. Replace
each of these vectors, say e, by r disjoint parallel vectors ei,..., er running
closely to e and having endpoints on ,5’1. This gives a virtual string r - cx
of rank rm where m is the rank of a. Check that u(r . a)(t) = 
In particular, if u ( a) i- 0, then r ’ cx is homotopically non-trivial.

3) Show that the rank 4 string a(7 with a= (1342) is homotopically
trivial. Hint: apply to 0(7 the move ((C)~)-1 as in Remark 2.7.3 where
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4) Let a be a permutation of {1,2,..., m}. If o-(m) - m and T is
the restriction of a to f 1, 2,..., Tn - 11, then cta is homotopic to ar.
if a(l) = m -1, ~(2) = 1, ~(3) = m, o-(m) = 2, then is homotopic to aT
where 7 is the permutation of f 1, 2,..., m - 21 defined by T(1) - m - 2
and 7(i) = u(i + 1) - 1 for i &#x3E; 1.

5) Let a string a be a product of the strings cxl,3, a2,4,

a3,5 ~ ~4,3? as,2. Show that u(a) = 0 and a(2) is homotopic to cx2,4.
Thus u(2) (a) = u(a (2) ) = 2t4 - 4t2.

6) More generally, for any p, q, s, m &#x3E; 1, if a string cx is a product of the
strings
then rZ and q, m are prime to r, then = aP,s .

4. Geometric realization of virtual strings.

4.1. Realization of strings.

We explain here that every virtual string admits a canonical realization
by a closed curve on a surface and moreover describe all its realizations.

Let a be a virtual string of rank m with core circle S. Identifying the
tail with the head for all arrows of a, we transform ,S’ into a 1-dimensional

CW-complex r = rx. We thicken h to a surface ~a as follows. If m = 0,
then r = ,S’ and we set E, - ,S’ x [- 1, 1]. Assume that m &#x3E; 1. The

0-cells (vertices) of r have valency 4 and their number is equal to m.
A neighborhood of a vertex v E r embeds into a copy Dv of the unit 2-disk
~ (x, y) E R2 1 x2 ~ y2  1 ~ as follows. Suppose that v is obtained from

an arrow (a, b) where a, b E S. Note that any point :r ~ 9 splits its small
neighborhood in ,S’ into two oriented arcs, one of them being incoming
and the other one being outgoing with respect to x. A neighborhood of v
in r consists of four arcs which can be identified with small incoming and

outgoing arcs of a, b on S. We embed this neighborhood into Dv so that v
goes to the origin and the incoming (resp. outgoing) arcs of a, b go to the
intervals [- 1, 0] x 0, 0 x [- 1, 0] (resp. [0, 1] x 0, 0 x [0, 1]), respectively.
In this way the vertices of h can be thickened to (disjoint) copies of the
unit 2-disk endowed with counterclockwise orientation. Each 1-cell of IF

connects two (possibly coinciding) vertices and can be thickened to a

ribbon connecting the corresponding 2-disks. The thickening is uniquely
determined by the condition that the orientation of these 2-disks extends
to their union with the ribbon. Thickening in this way all the vertices and
1-cells of r we embed h into a surface ~a . By construction, ~a is a compact
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connected oriented surface with non-void boundary and Euler characteristic
x(£a) = x(r) = -m. Composing the natural projection ,S’ --~ r with the
inclusion r - E« we obtain a closed curve S - E« realizing a.
The construction of E« is well known, see [Fr], [Cal], [CW].

It is clear that for any surface E and any (generic) closed curve
cv : S --+ E realizing cx, a regular neighborhood of w (S) in E is homeomorphic
to Moreover, the homeomorphism can be chosen to transform
into In other words, w can be obtained as a composition of with an

orientation-preserving embedding ~a ’---+ E. In particular, E« is a surface
of minimal genus containing a closed curve realizing a. Therefore the
genus g(a) of cut defined in Section 2.5 is equal to the genus of It will

be explicitly computed in the next subsection. Note finally that a closed
surface of minimal genus containing a curve realizing a is obtained from E,
by gluing 2-disks to all components of 

4.2. Homological computations.

Consider again a virtual string a of rank m with core circle S.

Let r = ra, £ = E«, and w = £a be the graph, the

surface, and the closed curve constructed in the previous subsection.

The orientation of E determines a homological intersection pairing
B = x --+ Z. This bilinear pairing is skew-symmetric
and its rank is equal to twice the genus of E. Thus

In particular, cx can be realized by a closed curve on ,S’2 or ~2 if and only
if Ba = 0.

Since r is a deformation retract of E, the inclusion homomorphism
Hi(r) - Hi(£) is an isomorphism. Since r is a connected graph
with x(r) = -m, the group H, (r) = is a free abelian group of

rank m + 1. We describe a canonical basis in H, (E). Set s = [w] E H, (E).
For an arrow e = (a, b) E arr(cx), the map w transforms the arc ab C S,
leading from a to b in the positive direction, into a loop w (ab) in E.

Set [e] = [w(ab)] G An easy induction on m shows that

is a basis of Our next aim is to compute the
matrix of B in this basis. Note for the record that ~(.r,~/) = -B(y, x)
and B(x, x) = 0 for all elements x, y of this basis.

By Formula (3.5.1 ), B ( ~e~, s) = n(e) for any e E arr(ct) . To compute
the other values of B, we need more notation. Let a, b be distinct point of S.
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The interior of the arc ab c ,S’ is the set (ab)’ - ab - la, bl. For any arcs
ab, cd C S, we define ab ~ cd E Z to be the number of arrows of a with tail
in (ab) ° and head in (cd) ° minus the number of arrows of a with tail in (cd) °
and head in (ab)°. Note that the arrows with both endpoints in (ab)° n (cd)°
appear in this expression twice with opposite signs and therefore cancel
out. Clearly, ab ~ cd = -cud. ab. In particular, ab ~ ab = 0. If e = (a, b) is an
arrow of a, then it follows from the definitions that n(e) = ab ~ ba.

LEMMA 4.2.1. Let e = (a,b) and f - (c,d) be two arrows of a.
Then B ( ~e~ , ~ f ~ ) = ab ~ cd + c where E = 0 if e and f are unlinked, s = 1
if f links e positively, and é = -1 if f links e negatively.

Proof - If e = f, then a = c, b = d and all terms of the stated

equality are equal to 0. (Note that an arrow is unlinked with itself.) Assume
from now on that e ~ f so that a, b, c, d are pairwise distinct points of S.

Suppose first that e and f are unlinked. There are four cases to
consider depending on whether the endpoints of e, f lie on ,S’ in the cyclic
order (i) a, b, c, d; or (ii) a, b, d, c; or (iii) a, c, d, b; or (iv) a, d, c, b.

In the case (i), the arcs ab, cd C S are disjoint so that [e], f ~ E HI (’E)
are represented by transversal loops respectively. Then

B([e], = ab ~ cd, cf. Section 3.5.

In the case (ii), the arcs ab, dc C ,S’ are disjoint so that [e],
= s - H1 (E) are represented by transversal loops w(ab), w(dc) ,

respectively. Hence B ([e], f ~ * ) = ab ~ dc and

In the case (iii), we have B([e], = 2013~([/], [e]) = -cud. ab = ab ~ cd
since the pair ( f , e) satisfies the conditions of (ii).

In the case (iv), the arcs ba, dc C ~S’ are disjoint so that [e]* = s - [e],
~ f ~ * = s - ~ If ] E H1 ( ~ ) are represented by transversal loops cv ( ba) , w (dc) ,
respectively. Therefore

It remains to observe that
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Suppose that f links e positively. Then their endpoints lie on ,S’ in

the cyclic order a, c, b, d. The loops X = representing
~e~, ~ [f] E H, (E) are not transversal since both contain w(cb). Pushing
Y slightly to its left in E, we obtain a loop, Y+, transversal to

X. It is understood that the point w(c) = w(d) E Y is pushed to

a point lying between cv(ac) and w(da) in a small neighborhood of

w(c) = w(d). Introducing coordinates (x, y) in this neighborhood we can
locally identify X, Y, Y+ with the axis y = 0, the union of two half-lines
x = 0, y  0 and y = 0, x &#x3E; 0, and the union of two half-lines x = -1,
y  1 and y = 1, x &#x3E; -1, respectively. To compute the intersection number
B([e], [f]) = X ’ Y = X . Y+, we split the set X n Y+ into four disjoint
subsets. The first of them consists of a single point near w(c) = w(d),
given in the coordinates above by .r == 20131,?/ == 0. This point contributes 1
to X - Y+. The second subset of x n Y+ is w(ac) n Y+ ; its points are
numerated by arrows of a with one endpoint in the interior of ac and the
other endpoint in the interior of cd. The contribution of these crossings
to X ~ Y+ is equal to ac ~ cd. The third subset of X n Y+ is numerated by the
crossings of w(cb) with the part of Y+ obtained by pushing w(bd) C Y to
the left; they are numerated by arrows of cx with one endpoint in the interior
of cb and the other endpoint in the interior of bd. The contribution of these
crossings to X - Y+ is cb . bd. The forth subset of X n Y+ is numerated by
the self-crossings of each of them gives rise to two points of X n Y+
with opposite intersection signs. Therefore this forth subset contributes 0
to X - Y+. Summing up these contributions we obtain

If f links e negatively, then e links f positively and by the results above,

4.3. Examples.

1) Consider the string a = ap,q with p, q &#x3E; 1 introduced in

Section 3.3.1. Recall the arrows e1, ... , ep+q of a. We compute the matrix
of the bilinear form B = Ba : HI (Ea) x HI (~a) ~ Z with respect to the
basis s By Formula (3.5.1), B(~ei~, s) - q for i = 1, ... , p
and -p for j = 1, ... , q. Each pair of arrows 

with i, i’ = 1, ... , p is unlinked and by Lemma 4.2.1, B([e-i],[e-i,]) = 0.
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Similarly, each pair of arrows ep+j, ep+j’ with j, j’ - l, ... , q is unlinked
and = 0. The arrow ep+j links ei positively and by
Lemma 4.2.1, B ( ~ei~ , = (p - i) + (q - j) + 1. It is easy to compute
that the rank of B is equal to 2 if p = q = 1, to 6 if min(p, q) &#x3E; 3, and
to 4 in all the other cases. The genus g(a), as we know, is half of this rank.
In particular, g(al,l) = 1 which shows that the genus is not a homotopy
invariant.

2) Consider the string a - 0152a defined in Section 3.3.2 for a

permutation a of the set {I, 2, ... , m}. Recall the arrows el, ... , em of 0152. We
compute the matrix of the bilinear form B = Ba : HI (£~r) x HI (E,) --+ Z
with respect to the basis s U The number B(~ei~, s) - n(ei) is

computed by Formula (3.3.1 ) . Pick two indices i, j with I  i  j  m.

Lemma 4.2.1 implies that  7(~), then

If a(j)  a( i), then

5. Cobordism of strings and the slice genus.

5.1. Cobordism of strings.

Two strings cut and ,Q are cobordant if there are an oriented 3-mani-
fold M and two disjoint closed curves on aM realizing a and ~3, respectively,
and homotopic to each other in M. Here two curves on a surface are disjoint
if their images are disjoint subsets of the surface. The involution 0 F--~ ,~ is
needed in the definition of cobordism to ensure the reflexivity, cf. the proof
of the next lemma.

In the definition of cobordism, we do not require M to be compact or
connected. However, replacing M by a regular neighborhood of a homotopy
relating the two curves in M we can always assume that M is compact and
connected.

LEMMA 5.1.1. - Cobordism is an equivalence relation on the set of

(homeomorphism classes of) strings. If strings a and 0 are cobordant,
then a is cobordant to ~ and a- is cobordant to ~3- .
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Proof. To see that a string cx is cobordant to itself, we realize a
by a closed curve w on a closed surface E and take M = E x ~0, 1~ with
the orientation obtained as the product of the orientation in E and the
right-handed orientation in ~0,1~ . Then w x 1 and cv x 0 are disjoint closed
curves on aM = (E x 1) U (-~ x 0) realizing respectively a and 0152. These

curves are homotopic in M.

The relation of cobordism is symmetric: if two disjoint closed curves
on aM realize strings then the same curves on -8M = a(-M)
realize 0152, {3.

Suppose that a string a1 is cobordant to cx2 and cx2 is cobordant

to cx3. Let M, M’ be disjoint oriented 3-manifolds such that are

realized by disjoint closed curves Wl, W2 on aM homotopic in M and a2, 1i3
are realized by disjoint closed curves úJ~, úJ3 on aM’ homotopic in M’.
Observe that a regular neighborhood, U, of w2 in aM is homeomorphic
to a regular neighborhood, U’, of w2 in aM’ via an orientation reversing
homeomorphism transforming w2 into w2. Gluing M to M’ along U ~ U’
we obtain an oriented 3-manifold N. The curves Wl, W3 lie on 8N and

realize cxl, a3, respectively. These curves are disjoint and homotopic in N.
Hence a1 is cobordant to a3-

The last claim of the lemma is obtained by inverting orientation on
the ambient 3-manifold (resp. on the circle). 0

THEOREM 5.1.2. - Homotopic strings are cobordant.

Proof. For strings a, ~3, we write a N 13 if these strings can be
realized by homotopic (possibly intersecting) closed curves on the same
surface. The relation - is reflexive and symmetric but not transitive.

The following lemma shows that the relation of homotopy is precisely the
equivalence relation generated by N.

LEMMA 5.1.3. - Two strings are homotopic if and only if there
is a sequence of strings 01 = a, c~2 , ... , an - ,C3 such that cti - ai+1
for i - 1,...,n - 1.

Proof. - As we know, the underlying virtual strings of homotopic
closed curves on a surface are themselves homotopic. Therefore if there

is a sequence of strings cxl = cx, cx2, ... , an - 13 such that cei - cx2+1
for i - 1, ... , n - 1, then a is homotopic to {3. To prove the converse,
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it suffices to show that if {3 is obtained from rx by a homotopy move (a)s,
(b)s, or (c) s, then a - {3.

Let ,S’ be the core circle of a and w : S - E be a curve realizing a on a
surface E. Pick distinct points a, b C ,S’ such that the arc ab C ,S’ does not

contain endpoints of a. Let /3 be obtained from cx by the move (a) 5 adding
the arrow (a, b). Attaching to cv a small curl on the right of w (ab) , we obtain
a closed curve w’ : ,5’ --~ E realizing 0. Clearly, w’ is homotopic to w in E.
Hence 0.

Pick two arcs x, y on ,S’ disjoint from each other and from the
endpoints of a. Let a, a’ be the endpoints of x (in an arbitrary order) and
b, b’ be the endpoints of y. Let ,~ be obtained from cx by the move (b)s
adding to a the arrows (a, b) and (b’, a’). Let c E - w(,S’) be two
small closed disks lying near the arcs w(x), w(y), respectively. Removing
the interiors of these disks from E and gluing the circles 8Dy along
an orientation reversing homeomorphism, we obtain a new (oriented)
surface, E’, containing w(S). In E’ the arcs w(x) and w(y) are adjacent to
the component of ~’ - w(S) containing 8Dx = We can push w(x)
across this component towards w(y) and eventually across w(y). This gives
a curve w’ : S - E’ realizing 0 and homotopic to w : S --t S~. Hence a - 0.
Note that the four possible forms of the move (b) s (depending on whether x
leads from a to a’ or from a’ to a and similarly for y) are realized by
choosing Dx, Dy on the left or on the right of w(x), w(y).

Suppose that a has three arrows (a+, b), I (b+, c), (c+, a) where a, a+,
b, b+, c, c+ E S such that the (positively oriented) arcs aa+, bb+, cc+ are
disjoint from each other and from the other endpoints of c~. Let {3 be
obtained from cx by the move replacing the arrows (a+, b), (b+, c), (c+, a)
with the arrows (a, b+), (b, c+), (c, a+). Consider the canonical realization
wa : S - ~a of cx. Observe that the arcs form

a simple closed curve in ~a isotopic to a component of 8£~x. Gluing
a 2-disk D to this component of 8£~x we embed ~a into a bigger
surface, E. Pushing across D C E and then across the double

point w(b+) = w(c), we obtain a curve w’ : ,S’ -~ ~ realizing {3 and homotopic
to ,5’ --~ E. Hence {3. D

We now accomplish the proof of Theorem 5.1.2. The obvious cylinder
construction shows that the underlying virtual strings of homotopic curves
on a surface are cobordant. Thus if we have strings cx, {3 with a - 0, then a
is cobordant to 0. Lemmas 5.1.1 and 5.1.3 now imply the claim of the
theorem. 0
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THEOREM 5.1.4. - The polynomial u is a cobordism invariant of
strings.

Proof. We begin with a lemma.

LEMMA 5.1.5. - Let F be a compact (oriented) surface whose

boundary is a union of r &#x3E; 1 circles 81, ... with the induced orientation.
Let M be an oriented 3-manifold and (j: F - M be a map such that

C n w(8j) = ø for all i ~ j , and the restriction of w to
each circle is a generic (closed) curve in 9M for i = 1,..., r. Let cxi be
the virtual string underlying the latter curve. If the genus of F is 0, then

Proof. We need a few general facts about maps F - M. A point
a E Int F is a simple branch point of a map w : F - M if there is a closed
3-ball D3 C Int M such that w (F) n D3 is the cone over a figure eight curve
in S’2 = with cone point w (a) E Int D3 . Here by a figure eight curve
in ,S’2 we mean a closed curve with one transversal self-intersection. The set
of simple branch points of w is denoted Br (w) .

Set R+ = {r ~ R ~ r ~ 01. We say that a map w: F* -~ M is generic
= 8F and

(i) the restriction of w to 8F is an immersion into aM; any point
of w(8F) has a neighborhood V C M such that the pair (V, V n w(F)) is
homeomorphic to either (R 2 R x 0) x R+ or (R 2 R x 0 U 0 x R) x R+ ;

(ii) the restriction of w to Int F - Br(w) is an immersion into

Int M - w(Br(w)); any point of Br(w)) has a neighborhood
V C Int M such that the pair (V, Y n w(F)) is homeomorphic to either
(R 3 ~2 x 0), or (R3 , R2x 0 U 0 x JR2) or (~3, ~2 x 0 U 0 x ~2 URE x 0 x R).

Fix a generic map w : F - M. Set

It is clear from (i), (ii) that T consists of a finite number of immersed circles
in Int F and immersed proper intervals in F. These circles and intervals

have only double transversal crossings. The set of these crossings 
is finite and consists precisely of the preimages of the triple points of w.
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The set aT = T n OF is finite and consists precisely of the preimages of
the double points of 8M. The set Br(w) c T is also finite and
disjoint and 9T.

Let T be an abstract 1-dimensional manifold parametrizing T. The
projection p:T ~ T is 2-to-1 over and 1-to-l over T - ~1(T). We
shall identify the points of T - ~1 (T) with their preimages under p.

For any point a C T - (~1(T) U Br(w)) there is exactly one other
point b E T - (~1 (T) U Br(w)) such that w(a) = w (b) . The correspondence
a H b extends by continuity to an involution T on T. The set of fixed points
of T is It is clear that úJp7 = M. For a E 9T = aT, the
point T(a) is the unique ~a~ such that w(a) = w(b).

We define an involution p : 8T - 9T. For a E aT = aT , let Ia C T be
the interval adjacent to a and let p(a) E aT be its endpoint distinct from a.
Clearly, ¡.,t2 = id. We claim that p commutes with 71aT. Indeed, if T(Ia) = Ia,
then T exchanges the endpoints of la so that T = p on aIa . (In this case T
must have a unique fixed point on Ia, so that Ia contains a unique branch

point of w.) If Ia, then T(Ia) has the endpoints so

that ~c (T (a) ) = T (~c (a) ) . Since and p commute, p induces an involution
on aT/7 The latter involution is denoted v.

Assume from now on that w maps the components 81, ... , Sir of 9F
to disjoint subsets of aM. Each crossing point x of w j a f is then
a self-crossing of w(S) for a certain component S = ,S’2 of OF. Consider the
loop úJx in 8M beginning at x and following along until the first return

to x and such that the pair (a positive tangent vector of wx at 0, a positive
tangent vector of wx at 1) is a positive basis in the tangent space of x in 9~.
Let E HI be the homology class of wx and in : HI (8M) - Hl (M)
be the inclusion homomorphism. We have either v(x) - x or v(x) =,4 x.
We prove that in the first case in([wx]) E C Hl (M) and in the
second case

Let w - 1 (x) = {a, 6} where a, b E S n 9T and the corresponding arrow
is directed from a to b as in Section 2.2. Denote the positive arc ab C S’ by 1x
and observe that wx = w(1x). Suppose that v(x) = x. Then p(a) E 
Inspecting the orientations of the sheets of w(F) meeting along w(T), we
observe that p: 8T - aT transforms arrowtails into arrowheads and vice

versa (this was first pointed out in [Ca2]). Therefore p(a) = b. By the
definition of T, we have T (a) - b and T(b) = a. Since T preserves the
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set aIa = {a, we have T(Ia) = Ia. Observe that the product of the path
1x = ab C ,S’ with the immersed interval p(Ia ) C F oriented from b to a
is a loop in F, say p. The loop w(p) in M is a product of 
with the loop The latter loop has the form 55-1 where 6 is the

path in M obtained by restricting w p to the arc in Ia leading from b
to the unique branch point of w on Ia. This loop is contractible in M.

Hence ~c.~(p)~ E c~* (Hl (F)).

Suppose that v(x) :~ x. Note that the path 1v(x) begins at p(b)
and terminates at p(a). Consider the loop p = 
F beginning and ending at a. Here the intervals Ib, Ia are oriented from
b to p(b) and from a to p(a), respectively. Then w(p) is the product of
the loop wx beginning and ending in x, the path beginning in x
and ending in v(x), the loop Wv(x) beginning and ending in v(x), and the
path beginning in v(x) and ending in x. The paths 

are mutually inverse since Ib - and wpT = wp. Hence

Denote by B the intersection form H1(8M) x H1 (aM) Z.

Set si = [w(Si)] E H1(8M) and S = Sl -f- s2 -~ ... ~. sr E H1(8M).
By Section 3.5,

For x the loop Wx lies on and is disjoint from
Hence = Note also that

Therefore Formula (5.1.2) can be rewritten as

Assume that the genus of F is zero. We shall show that each orbit

of the involution v contributes 0 to the right hand side of
Formula (5.1.3). This will imply the claim of the lemma. It suffices to prove
that for any x E we have s) = 0 in the case v(x) = x and

B(~],~) == -~([~(~)],5) in the case v(x) ~ x. Set hx = ] E H1(8M)
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if v(x) - x and hx - [wx] + ~cvv(~)~ E Hl(,9M) if v(x) ~4 x. As we

know, in(hx) C úJ*(H1(F)). Since the genus of F is 0, the group HI (F)
is generated by the homology classes of the boundary components. Hence
there is an integral linear combination h = h(x) of si, ... , sr E 
such that = in(h). Then hx - h E K where K is the kernel of
in : H1 (8M) - Hl (M). The sum s = s, + -’’ + sr being represented by the
1-cycle 8w(F) also lies in K. It is well known that B(K x K) = 0. Hence
B(hx - h, s) = 0. Since the curves w(81), ... , are pairwise disjoint
and B is skew-symmetric, B(h, s) = 0. Therefore B(hx, s) = 0. This implies
our claim. 0

We can now finish the proof of the theorem. Let a, /3 be cobordant

strings. By assumption, there is an oriented 3-manifold M and a homotopy
{úJt : 81 ---+ MItE[0,1] such that are disjoint (generic) closed curves
on 8M realizing a and ø, respectively. The homotopy fwtlt defines a

map w: S1 x [0, 1] -~ M. We provide 6~ x [0, 1] with the orientation

obtained as the product of the counterclockwise orientation in ,S’1 and the

right-handed orientation in ~0,1~ . Applying Lemma 5.1.5 to w we obtain
that u(ao) + u(al) = 0 where aim is the string underlying the restriction
of u) to ,S’1 x i where the orientation of ,S’1 x i is induced by the one
in ,S’1 x [0, 1]. This is the counterclockwise orientation on ,S’1 x 1 and

the opposite one on ,5’1 x 0. Therefore c~l = ø and ao = Hence

COROLLARY 5.1.6. - The strings with q, p’ ~ q’ are
cobordant if and only p’ and q = q’.

This follows from the previous theorem and the formula u(ap,q) -
ptq - qtP. The strings cxp,q with p = q are all cobordant to each other as
will be shown in the next subsection.

COROLLARY 5.1.7. - For any integers rl , ... , r~ &#x3E; 1, the polynomial
cobordism invariant of strings.

Proof. - It suffices to prove that if a string a is cobordant to a string 13,
then is cobordant to ~3~T &#x3E; for r &#x3E; 1. Let M be a compact oriented

3-manifolds such that cx, B are realized by disjoint closed curves w, w’ on M

homotopic in M. Let f : S’ x [0, 1] ~ M be a homotopy between = 
and cv’ = By the Poincar6 duality, there is a unique y C HI (M; Z)
such that y n [M] = [f] C H2 (M, ~M; ~) . Let M --~ M be the r-fold covering
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determined by y(mod r) E The mapping f lifts to M and
yields a homotopy between a(r) and - ~3(~’) . 0

5.2. Slice strings.

A virtual string cobordant to a trivial string is slice. Clearly, a trivial
string is slice. Lemma 5.1.1 implies that strings cobordant to a slice string
are slice. By Theorem 5.1.2, a string homotopic to a slice string is slice. By
the proof of Corollary 5.1.7, all coverings of a slice string are slice.

Theorem 5.1.4 gives obstructions to the sliceness: the polynomial u
and the higher polynomials of a slice string are equal to 0. For
example, the strings ap,q with are not slice.

It is easy to see that a string is slice if and only if it can be realized
on a closed surface E by a closed curve contractible in an orientable 3-
manifold bounded by E . Using the gluing of 3-manifolds along 2-disks in
the boundary, we obtain that a string that is a product of slice strings is
itself slice. Similarly, using the gluing of 3-manifolds along (subsurfaces of)
their boundary we obtain the following cancellation: if a product of a string
a with a slice string is slice then a is slice.

We outline a construction of slice strings which mimics the well known
fact that a sum of a knot with its mirror image is slice. Namely, for any
virtual string cx, its appropriate product with cx - is slice. Indeed, let ,S’ be

the core circle of cx and let ab C ,5’ be an arc containing all the endpoints
of a. Let (a’, S’, a’b’ C ~5’’) be a disjoint copy of the triple (cx, S, ab).
Consider the circle ,S’" _ (ab U a’b’)/a = a’, b = b’ and provide it with the
orientation extending the one on ab. The arrows of a and a‘ are attached
to ab U a’b’ and form in this way a virtual string, c~", with core circle S".
It is clear that a" is a product of a with a - . We claim that a" is slice.
To see this, represent a by a closed curve cv : ? 2013~ E on a surface E. The
map w transforms S - ab onto an embedded arc in E disjoint from the rest
of the curve. Let D c E be a 2-disk such that D n = w(S - ab) and

Consider the 3-manifold M = (~ - Int D) x [0, 1].
The four paths w (ab) x 0, w (ab) x 1, w (a) x [0, 1], cv (b) x [0, 1] form a closed
curve on 8M realizing a" and contractible in M.

The analogy with knot theory suggests the following definition.

A string cx is ribbon if its core circle has an orientation reversing involution j
such that for any arrow (a, b) of cut the pair ( j (b), j (a) ) is also an arrow of a.
Note that such an involution j is topologically equivalent to the complex
conjugation on and, in particular, has two fixed points. The assumptions
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on cx imply that these two points are not endpoints of a. For example, it is
obvious that the string cx" constructed in the previous paragraph is ribbon.
Another example: the string cxp,p with p &#x3E; 1 is ribbon. The ribbonness of a

string is not a homotopy property: a string obtained from a ribbon string
by homotopy moves may be non-ribbon.

The next lemma shows that all ribbon strings are slice.

LEMMA 5.2.1. - Ribbon strings are slice.

Proof. Let ,S’ be the core circle of a ribbon string a and let

j : S - ,S’ be an orientation reversing involution transforming arrows of a
into arrows of a with opposite orientation. Recall the canonical realization

S - ~a of cx. The involution j induces an involution j’ on the
graph r a = We extend j’ to the disks used to construct ~a
by Dv ----* Dj,(v), (x, y) - (-y, -x) where v runs over the vertices of ra
and x, y are the canonical coordinates in these disks, cf. Section 4.1. The

resulting involution extends to the ribbons in the obvious way and yields
an orientation reversing involution --~ ~a such that 
The set Fix(J) of fixed points of J consists of two disjoint embedded
intervals in ~a with endpoints on Consider the cylinder ~a x ~0,1~
and identify a x 0 = J(a) x 1 for all a E ~a - Fix(J). For each a E Fix(J),
contract a x [0, 1] C E, x [0, 1] into a point. This transforms E, x [0, 1]
into an oriented 3-manifold M such that 8M D ~a and is contractible

in M. 0

Remark 5.2.2. - Not all slice strings are ribbon. To give an example,
consider the ribbon string al,l. Since is slice, any string obtained as a
product of &#x3E; 2 copies of is slice. Some of such products are not ribbon.
For example, consider the permutation a = (12)(34) on the set {I, 2,3, 4}
permuting 1 with 2 and 3 with 4 and consider the rank 4 string a(7 defined
in Section 3.3.2. Drawing a picture, one observes that 0(7 is a product of
two copies of a,,, and is ribbon. Inverting orientation of any arrow of a(7
we obtain a string which is also a product of two copies of but which

is not ribbon by obvious geometric reasons.

5.3. Slice genus.

The slice genus sg(a) of a string a is the minimal integer &#x3E; 0

satisfying the following condition: there are an oriented 3-manifold M,
a compact (oriented) surface F of genus bounded by a circle, and a
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proper map w : F - M such that aM is a (generic) closed
curve on 8M realizing cx. (The word "proper" means that cJ(8F) C 
Such exists because any loop on a closed surface is homologically trivial
in a certain handlebody bounded by this surface. It is clear that sg(a) is a
cobordism invariant of c~. A string a is slice if and only if sg(a) = 0.

We similarly define a slice genus for tuples of strings. The slice genus
sg (a 1, ... , ar ) of r &#x3E; 1 strings a 1, ... , cxr is the minimal integer &#x3E; 0

satisfying the following condition: there are an oriented 3-manifold M, a
compact (oriented) surface F of genus bounded by r circles 81,..., Sr,
and a proper map c,~ : F --~ M such that the maps 8i -i ~M with
i = 1,..., r are disjoint (generic) closed curves on 8M realizing a1, ... , cxr,
respectively. The existence of such can be obtained by realizing aI, ... , on
by curves on disjoint surfaces, taking the connected sum of these surfaces
and presenting the result as a boundary of an appropriate handlebody.
We do not require M or F to be connected although it is always possible
to achieve their connectedness by taking connected sum. Note that the
genus of a disconnected surface is by definition the sum of the genera of
its components.

Clearly a,) &#x3E; 0. If sg (a 1, cxr) = 0 then we call

the sequence a1,..., ar slice. The same argument as in the proof of
Corollary 5.1.7 shows that if a 1, cxr is slice, then for any integer m &#x3E; 1,
the sequence of the m-th coverings ... , is slice. By Lemma 5.1.5,
if a1,..., ar is slice, then for any finite sequence of positive integers
m1,..., we have u(ml,...,mk)(a1) + ... + 0.

The number sg(al, ... , does not depend on the order in the

tuple a1,... , This number is preserved if we replace a1,... , ar with
cobordant strings. If ar is slice, then sg(cxl, ... , = sg(cxl, ..., ar- 1)
Reversing orientations in 3-manifolds and/or surfaces F, we obtain

Using the gluing as in the proof of Lemma 5.1.1, we obtain that for

any 0  s  r and any strings cx, aI, ... , ar,

When c~ is a trivial string, this gives the obvious inequality sg(~xl, ... , 

For r = 2, we can rewrite the slice genus in the equivalent form
for strings a, {3. The results of the
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previous paragraph imply that the number {3) depends only on the
cobordism classes of c~, (3 and defines a metric on the set of cobordism
classes of strings: sg’ (cx, ,~) - 0 if and only if cut and {3 are cobordant

(cf. the end of the proof of Theorem 5.1.4), sg’ ({3, a), and
sg’ (a, {3)  ’Y) -~- sg’ ( ’Y, 0) for any strings cx, {3, ’Y. Note also that

sg(cx) = 0) where 0 is a trivial string and sg’(a, 0)  sg(a) + sg({3).

5.4. Adams operations on strings.

We can define "Adams operations" on the set of homotopy
classes of strings. Let a be a virtual string. Replacing cut by a homeomorphic
string, we can identify its core circle with = 1}. Consider
a curve w : S1 --&#x3E; E realizing cx on a surface E. The mapping S1 --&#x3E; E sending
z E 1S’1 to is homotopic to a generic curve 81 ----* E. We define 7jJn( a)
to be the homotopy class of its underlying string. Lemma 5.1.3 implies
that 7jJn (cx) depends neither on the choice of cv nor on the choice of a in its
homotopy class. Clearly, 7jJ1(a) = a, ~-1 (c~) = cx-, and 0 on
for any xn, n E Z. It is also clear that on transforms cobordant strings
into cobordant strings and induces thus an "Adams operation" on the
set of cobordism classes of strings. As an exercise, the reader may check
that = 

Remarks 5.5.

1) J.S. Carter [Ca2] first observed that there are closed curves on

surfaces that bound no singular disks in 3-manifolds bounded by these
surfaces. One of his results can be rephrased by saying that the string 
is not slice. Carter’s technique consists in studying certain partitions
(called filamentations) of the set of double points of a curve into pairs and
singletons. In the notation of the proof of Lemma 5.1.5 (where F should be
a disk), a filamentation is formed by the orbits of the involution A. Carter’s
obstruction to the sliceness is formulated in terms of intersection numbers

of the intervals of double points on the disk. Note also a relevant result
of [HK] (Theorem 4.10): if a closed curve on a surface has a filamentation
then any homotopic closed curve also has a filamentation.

2) The definition of cobordism for strings requires only the existence of
disjoint realizations homotopic in a 3-manifold. Note that any two disjoint
curves realizing cobordant strings on a closed surface are homotopic in a
certain oriented 3-manifold bounded by this surface. To see this, one needs
the following two observations.
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(i) For any disjoint realizations wl, w2 of strings a,, cx2 on a closed
surface E, there are realizations of a1 , a2 on disjoint closed

surfaces 1, E2 and an oriented 3-manifold M with 
such that wi is homotopic to úJ~ in M for i = 1, 2. This can be proven by
adding 2-handles along the simple closed curves in E bounding a regular
neighborhood of wl in E.

(ii) For any realizations w, w’ of the same string on closed surfaces E,
Z/, there is an oriented 3-manifold M with 8M = £ U (-E’) such that w is
homotopic to w’ in M. This can be deduced from the fact that both w, w’
can be obtained from the canonical realization of the string on a closed
surface of minimal genus by adding 1-handles.

6. Based matrices of strings.

6.1. Based matrices.

Fix an abelian group H. A based skew-symmetric matrix over H or
shortly a based matrix is a triple (G, s, b : G2 = G x G ~ H) where G is a
finite set, s C G, and the mapping b is skew-symmetric in the sense that

b(g, h) = -b(h, g) for all g, h E G and b(g, g) = 0 for all g E G.

We call an element g E G - ~s~ annihilating (with respect to b)
if b(g, h) = 0 for all h E G. We call g E G - Isl a core element if

b(g, h) = b(s, h) for all h E G. We call two elements gl, g2 E G - ~s~
complementary if b(gl, h) + b(g2, h) = b(s, h) for all h E G. A based matrix
(G, s, b) is primitive if it has no annihilating elements, no core elements,
and no complementary pairs of elements. An example of a primitive based
matrix is provided by the trivial based matrix (G, s, b) where G consists of
only one element s and b(s, s ) = 0.

We define three operations M1, M2, M3 on based matrices, called

elementary extensions. They add to a based matrix (G, s, b) an annihilating
element, a core element, and a pair of complementary elements, respectively.
More precisely, M1 transforms (G, s, b) into the (unique) based matrix
(G = G II ~g~, s, b) such that b : G x G - H extends b and b(g, h) = 0 for
all h E G. The move M2 transforms (G, s, b) into the (unique) based matrix
(G = G II ~g~_, s, b) such that b : G x G - H extends b and b(g, h) - b(s, h)
for all h E G. The move M3 transforms (G, s, b) into a based matrix

(G = G II fgl, 92 1, s, b) where b : 6 x G - H is any skew-symmetric map
extending b and such that + b(g2, h) = b(s, h) for all h E G. It is
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clear that a based matrix is primitive if and only if it cannot be obtained
from another based matrix by an elementary extension.

Two based matrices (G, s, b) and (G’, s’, b’) are isomorphic if there is
a bijection G - G’ sending s into s’ and transforming b into b’. To specify
the isomorphism class of a based matrix (G, s, b), it suffices to specify the
matrix (b(g, h))g,hGG where it is understood that the first column and row
correspond to s. In this way every skew-symmetric square matrix over H

(with zeroes on the diagonal) determines a based matrix.

Two based matrices are homologous if one can be obtained from

the other by a finite sequence of elementary extensions M1, M2, M3, the
inverse transformations, and isomorphisms. The homology is an equivalence
relation on the set of based matrices.

LEMMA 6.1.1. - Every based matrix is obtained from a primitive
based matrix by elementary extensions. Two homologous primitive based
matrices are isomorphic.

Proof. The first claim is obvious: eliminating annihilating elements,
core elements, and complementary pairs of elements by the moves Mi 1
with i = 1, 2, 3 we can transform any based matrix T into a primitive based
matrix T.. Then T is obtained from T. by elementary extensions.

To prove the second claim, we need the following assertion:

(*) a move Mi followed by yields the same result as an isomorphism,
or a move or a move followed by Mt with e {1,2,3}.
This assertion will imply the second claim of the lemma. Indeed,

suppose that two primitive based matrices T, T’ are related by a finite
sequence of transformations M+l M" M+l and isomorphisms. An
isomorphism of based matrices followed by Mixl can be also obtained
as Mixl followed by an isomorphism. Therefore all isomorphisms in our
sequence can be accumulated at the end. The claim (*) implies that T, T’
can be related by a finite sequence of moves consisting of several moves
of type Mi 1 followed by several moves of type Mi and isomorphisms.
However, since T is primitive we cannot apply to it a move of type 
Hence there are no such moves in our sequence. Similarly, since T’ (and
any isomorphic based matrix) is primitive, it cannot be obtained by an
application of Mi. Therefore our sequence consists solely of isomorphisms
so that T is isomorphic to T’.
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Let us now prove (*). We have to consider nine cases depending
on i, j E {I, 2, 3}.

For i, j E f 1, 2 1, the move Mi on a based matrix (G, s, b) adds one
element g and then Mj-1 removes one element g’ E G II ~g~. If g’ = g, then
M3 o Mi is the identity. g, then g’ E G is annihilating (resp. core)
for j - 1 (resp. j = 2). The transformation M3 o Mi can be achieved by
first applying that removes g’ and then applying Mi that adds g.

Let i = 1, j = 3. The move Mi on (G, s, b) adds an annihilating
element g and removes two complementary elements gl , g2 E 
If gel =1= 9 and ~2 7~ g, then gl, 92 C G and Mi can be achieved by first
removing gl , g2 and then adding g. If gi = g, then g2 is a core element of G
and o Mi is the move removing g2. The case g2 = g is similar.

Let i = 2, j = 3. The move Mi on (G, s, b) adds a core element g
and M3 1 removes two complementary elements gl , g2 E G II ~g~ . If gl =1= 9
and g2 ~ g, then M3 o Mi can be achieved by first removing gl, g2 and
then adding g. If gl - g, then g2 E G is an annihilating element of G
and Mj-1 o Mi is the move removing 92. The case g2 = g is similar.

Let i = 3, j = 1. The move Mi on (G, s, b) adds two complementary
elements gl , g2 and removes an annihilating element g E G II {~1,~2}.

gi g2, then g E G and o Mi can be achieved by first
removing g and then adding 91, g2. If 9 - gl , then g2 is a core element

of G II and o Mi = M2. The case g = g2 is similar.

Let i = 3, j = 2. The move Mi on (G, s, b) adds two complementary
elements gl , g2 and removes a core element g E G II ~g1, g2 ~ . 
and g g2, then g E G and Mi can be achieved by first removing g
and then adding gl , g2 . If g = gi, then g2 is an annihilating element
of G II and = Mi. The case g = g2 is similar.

Let i = j = 3. The move Mi on (G, s, b) adds two complementary
elements gl, 92 and removes two complementary elements g’
in G II fgl, 92 1 - If these two pairs are disjoint, then M3 o Mi can be
achieved by first removing and then adding gl , g2 . If these two
pairs coincide, then Mj-1 o Mi is the identity. It remains to consider the case
where these pairs have one common element, say g’ = gi, 
Then g2 E G and for all h E G,

Therefore the move o Mi gives a based matrix isomorphic to (G, s, b).
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The isomorphism G - (G - ~g2 ~ ) U is the identity on G - and

sends g2 into g2. 0

Lemma 6.1.1 implies that each based matrix T = (G, s, b) is

homologous to a primitive based matrix T. = (G., s., b,) unique up to
isomorphism. This reduces classification of based matrices up to homology
to a classification of primitive based matrices up to isomorphism. Note that
we can choose T. in its isomorphism class so that G. C G and b. is the

restriction of b to G. x G..

We define two more operations on based matrices. For a based matrix
T = (G, s, b), set -T = (G, s, -b) and T- = (G, s, b- ) where

I for all h E G and

for all g,

The transformations T H -T, T - T - are commuting involutions on the
set of based matrices. It is easy to check that they are compatible with
homology and preserve the class of primitive based matrices. It follows from
the definitions that (-T). = -T. and (T-). = (T.)’.

Remarks 6.1.2. - 1) The moves Mi , M2 , M3 on based matrices are
not independent. It is easy to present M2 as a composition of M3 with 

2) Each isomorphism invariant v of primitive based matrices extends
to a homology invariant of based matrices by v(T) = v(T.). The most
important numerical invariant of a primitive based matrix (G, s, b) is the

number #(G). It is easy to define further invariants of primitive based
matrices. For instance, for k E H, we can set

Similarly, for k E H and a finite set A of elements of H endowed with
non-negative multiplicities, set

and

where the latter equality is understood as an equality of sets with

multiplicities. Clearly, 

3) If H C R is a subgroup of the additive group of real numbers, then
the I-variable polynomial

is a homology invariant of a based matrix
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6.2. The based matrix of a string.

With each virtual string a we associate a based matrix T(a) = (G, s, b)
over Z. Set G = G(a) = ~s~ II arr(a). To define b = b(a) : G x G - Z,
we identify G with the basis s of H, (E,), see Section 4.2.
The map b is obtained by restricting the homological intersection pairing

x Hl (~a) -~ ~ to G. It is clear that b is skew-symmetric.
We can compute b combinatorially using Formula (3.5.1) and Lemma 4.2.1.
In particular, b(e, s) = n(e) for all e E arr(a).

The map b can be computed from any closed curve cv realizing a
on a surface E. Indeed, such a curve is obtained from the canonical

realization of a via an orientation-preserving 
It remains to observe that such an embedding preserves intersection

numbers and transforms the basis s of into the

subset [w], of H, (E), cf. Section 3.5.

LEMMA 6.2.1. - If two virtual strings are homotopic, then their based
matrices are homologous.

Proof. By Lemma 5.1.3 it is enough to show that if two closed

curves w,wl on a surface E are homotopic, then the based matrices of
their underlying strings are homologous. By the discussion in Section 2.3,
it suffices to consider the case where w’ is obtained from by one of the
local moves listed there.

If aJ’ is obtained from w by adding a small curl, then =

U ~ y ~ where y is a new crossing. Clearly [w’] - 0 G or

depending on whether the curl lies on the right
or on the left of w. Also [aJ[] = for all x E Hence is obtained

from T (a) by M1 or M2.

Suppose that úJ’ is obtained from w by the move pushing a branch
of w across another branch and creating two new double points y, z.

Clearly, [úJ~] = for all x c It is easy to see

that Therefore is obtained from T(a)
by M3.

If cv’ is obtained from by pushing a branch of w across a double
point, then the subsets and [W’I, of 
coincide so that T (a) is isomorphic to T(/3). 0
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6.3. Invariants of strings from based matrices.

Every virtual string a gives rise to a primitive based matrix 
over Z by T, (a) - (T(a)).. This is the only primitive based matrix (up
to isomorphism) homologous to T(a). By Lemma 6.2.1, the based matrix
T.(a) = (G., s., b.) is a homotopy invariant of a. This based matrix
determines the polynomial u(a) introduced in Section 3: it follows from

Formulas (3.2.2) and (3.5.1) that u(a) = u(T(a)) = u(T.(a)). The number
p(a) = #(G.) - 1 is a useful homotopy invariant of a which may be
non-zero even when u(a) = 0, cf. the examples below. Note that if a is

homotopically trivial, then T. (a) is a trivial based matrix and p(a) = 0.

It follows from the definitions that T(a-) = (T(a))- and therefore
T,(a-) _ (T.(a))-. Similarly, -(T(a))- and T.(Ue) = -(T,(cx))-.

The based matrix T.(Q;) = (G. s. b.) can be used to estimate the
homotopy rank and the homotopy genus of a. Namely, hr(a) &#x3E; p(a)
since any string homotopic to a must have at least p(a) arrows.

Similarly, hg(a) where rank b, is the rank of the integral
matrix Indeed, if a’ is a string homotopic to a and

T(a’) = (G’, s’, b’), then g (a’) = 2 rank b’ 2 ~ rank b. since the matrix
of b’ contains the matrix of b. as a submatrix.

Combining the inequalities hr(a) &#x3E; p(a), hg(a) with

the obvious inequalities rank a &#x3E; hr(a) and g(a) &#x3E; hg(a), we obtain that
if T(a) is primitive, then rank a and hg(a) = g(a).

6.4. Applications.

1) The based matrix T(ap,q) of the string ap,q with p, q &#x3E; 1 was

computed in Section 4.3. It is easy to check that except in the case

p = q = 1, this based matrix is primitive. Thus T.(ap,q) = T(ap,q),
hr(ap,q) = rank ap,q = p + q and g(ap,q) provided p 7~ 1

or q I 1. In particular, ap,p is a homotopically non-trivial string with zero
u-polynomial for all p &#x3E; 1.

2) The product of strings defined in Section 2.4 does not induce a
well-defined operation on the set of homotopy classes of strings. To see this,
we exhibit a homotopically non-trivial string which is a product of two

copies of a homotopically trivial string. Namely, the string aa considered
in Section 5.2.2 has the required properties. It is observed there that cx~ is
a product of two copies of the homotopically trivial string The based

matrix can be explicitly computed, cf. Section 4.3.2. It is determined
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by the following skew-symmetric matrix over Z:

It is easy to check that this based matrix is primitive. Hence aa is not

homotopically trivial. Moreover, it is not homotopic to a string with  4

arrows.

. 3) We prove that the involution acts non-trivially on the set
of homotopy classes of strings. Consider the permutation a = (134)(2) on
the set {1,2,3,4} sending 1 to 3, 3 to 4, 4 to 1, and 2 to 2. Drawing the
string we obtain that 0152a = aT where T is the permutation (124)(3).
The based matrices and can be explicitly computed. They are
determined by the following skew-symmetric matrices:

The based matrices and are not isomorphic; this is clear for
instance from the fact that the first matrix has a row with three zeros while

the second matrix does not have such a row. It is clear also that these

based matrices are primitive. By Lemma 6.1.1, they are not homologous.
Hence a, is not homotopic to aT = au.

7. Genus and cobordism for based matrices.

Throughout this section the symbol R denotes a domain, i.e.,
a commutative ring with unit and with no zero-divisors. By a based
matrix over R, we mean a based matrix over the additive group of R.

7.1. Genus of based matrices.

We define a numerical invariant of a based matrix T = (G, s, b)
over R called its genus and denoted a(T). For subsets X, Y C G,
set Clearly, and
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b(X, X) = b(0, X) = 0 for all X, Y C G. A (simple) filling X of T is a finite
family ~Xi~i of disjoint (possibly empty) subsets of G such that Ui Xi = G,
#(Xi)  2 for all i, and one of Xi is the one-element set ~s~ . The matrix
of x = f Xi li is the matrix (b(Xi, Xj))i,j. This is a skew-symmetric square
matrix (with zero diagonal) over R. Its rank (the maximal size of a non-zero
minor) is an even non-negative integer; let denote half of this rank.

Set a(T) = where X runs over all fillings of T. Extending b by
linearity to the R-module A = RG freely generated by G and identifying a
subset X C G with the vector ¿9EX 9 E A, we can interpret a(T) as half
the minimal rank of the restriction of b to the submodules of A arising from
fillings of T.

Note that a(T) &#x3E; 0 and a(T) = 0 if and only if T has a filling with
zero matrix. In the latter case we say that T is hyperbolic.

LEMMA 7.1.1. - The genus of a based matrix is a homology invariant.

Proof. By Remark 6.1.2.1, it suffices to prove that a (T) = a (T’) for
any based matrix T’ = (G’, s, b’) obtained from a based matrix T = (G, s, b)
by a move Mi with i = 1, 3. The set G’ - G consists of one element if i = 1
and of two elements if i = 3. Pick a filling x = of T such that

a(T) = a(X). Consider the filling x’ _ (G’ - G) U IXili of T’. Its matrix
is obtained from the one of x by adjoining a row and a column. For i = 1,
these row and column are zero so that o’(~) = u(X). For i = 3, we have
b(G’ - G, Y) = Y) for all Y c G. Since one of the sets Xi equals (s) ,
we again obtain o,(X’) = u(X). Hence a(T’)  a(JY’) = a(X) = a(T).

To prove the opposite inequality, pick a filling X’ = fxili of T’
such We shall construct a filling X of T such that

 u(X’). This would imply a(T)  a(X)  = a(T’). Consider
the case i = 1. One of the sets Xi contains the 1-element set G’ - G.
We replace this Xi by Xi - (G’ - G) and keep all the other Xi. This

gives a filling x of T whose matrix coincides with the matrix of X’ .
Let now i = 3. If one of the sets X 2 is equal

to G’ - G = {~1~2}? then removing this Xi from X’ we obtain a filling X
of T. As in the previous paragraph, a(X) = Suppose that the
elements g1, g2 of G’ - G belong to different subsets, say Xl, X2, of the

filling X’. Then the sets Xi with i ~ 1, 2 and X = (Xi U X2 ) - fgl, 921
form a filling of T. Let Xo be the term of the fillings x and X’ equal to ~ s ~ .
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For any Y c G,

Applying this to Y = Xi with i ~ 1, 2, we obtain that the skew-

symmetric bilinear form determined by the matrix of X is induced from
the skew-symmetric bilinear form determined by the matrix of x’ via
the linear map of the corresponding free R-modules sending the basis
vectors X and respectively to X2 - Xo and 
Hence a(x)  o,(X’). 0

COROLLARY 7.1.2. - For any based matrix T over R, we have

a(T.) = a(T). A based matrix over R homologous to a hyperbolic based
matrix is itself hyperbolic.

7.2. Genus for tuples of based matrices.

The definition of the genus of a based matrix can be extended

to tuples of based matrices. Consider a tuple of r &#x3E; 1 based matrices

Ti = over R. Replacing by
isomorphic based matrices, we can assume that the sets are

disjoint. Let A = RG be the free R-module with basis G = Ur I Gt. Let A,
be the submodule of A generated by sl, ... , We call a vector x E A short

if x E As or x for some g E or x for

distinct g, h E G - { s 1, ... , A filling of Tl , ... , Tr is a finite farnily (Ai )1 2
of short vectors in A such that and one of Ai is

equal to ~i +~2 +’’’ +so. Note that each element of G - {81, ... , sIr I appears
in exactly one Ai with non-zero coefficient; this coefficient is then -~-l. The
basis vectors s 1, ... , s, may appear in several Ai with non-zero coefficients.

The maps ~bt : Gt x Gt - Rlt induce a skew-symmetric bilinear form
b = x 1~ -~ R such that b(g, h) - bt (g, h) for g, h E Gt and
b(Gt, Gt~ ) = 0 for t ~4 t’. The matrix of a filling A = of Ti,..., Tr is
the matrix (b(Ai, Aj))i,j. This is a skew-symmetric square matrix over R.
Let a(A) E Z be half of its rank. Set a(Ti, ... , Tr) = where

A runs over all fillings of Tl , ... , Tr. Clearly a(T1’...’ Tr) &#x3E; 0 and

a(Ti , ... , To) = 0 if and only if (T1, ... , has a filling with zero matrix.
In the latter case we call the sequence Tl , ... , Tr hyperbolic.

It is obvious that the is preserved when
Ti, ... ,Tr are permuted or replaced with isomorphic based matrices.
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Also If Tr is a trivial based matrix,
Tr ) - ~ (Tl , ... , Tr- i ) (because then the vector sr E A lies

in the annihilator of b).
For r = 1, the notion of a filling is slightly wider than the notion of

a simple filling in Section 7.1. However, they give the same genus and the
same set of hyperbolic based matrices.

LEMMA 7.2.1. - For any 1  t  r and any based matrices

Proof. Consider for concreteness the case where t = 1 and r = 2,
the general case is quite similar. We must prove that T2 )  ~ (Tl , To) +
~(-To, T2). Let Ti = for i = 0,1, 2 and T6 = (Go, so, bo) be a
copy of To where {g’ | g E Go , and bo is defined
by = bo (g, h) for g, h E Go. We can assume that the sets

Gi,Go,Go,G2 are disjoint. Let Ai,Ao,Ao,A2 be free R-modules freely
generated by G1 , Go, Go, G2, respectively, and let A = A1 ® A0 ® t1o 0 A2.
There is a unique skew-symmetric bilinear form B = bl EB bo 0 (-bo) ® b2
on A such that the sets Gi, Go, Go, G2 C A are mutually orthogonal and the
restrictions of B to these subsets are equal to bl, bo, "~0~2? respectively.

Let be the submodule of Ao 0 A0 generated by the vectors

{~ + Set L = Ai EB A2 C A. Observe that the projection
p : L --&#x3E; A2 along W transforms B into b2. Indeed, for

G2, &#x3E;

Pick a hliing C Ai ® Ao of (Tl , To ) whose matrix has

rank 2a(Ti , To). This means that the restriction of B to the submodule
Vi C A 1 EB Ao generated i has rank 2a(TI, To). Similarly, pick a
filling c A2 of (-To, T2) such that the restriction of B to
the submodule V2 c Ao 0 A2 generated has rank 2~ ( -To , T2 ) .
We claim that there is a finite set 0 C ( Yl + V2) n L such that p(b) c l11 EB A2
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is a filling of (Tl , T2 ) . Denoting by V the submodule of 111 EB A2 generated
by we obtain then the desired inequality:

Here the second inequality follows from the inclusion p-l (V) c (vi + V2 ) n
L + Ker p c L and the fact that Ker p = ~ lies in the annihilator of B, L.

To construct 1/;, we modify f Aili as follows. Let ~1 be the vector of
this filling equal to s 1 -f- so. Adding appropriate multiples of Ai to other Ai
we can ensure that the basis vector so E Go appears in with

coefficient 0. This transforms f Ai I into a new filling of (TI, TO) which will
be from now on denoted A This transformation does not change
the module VI generated by Similarly, we can assume that a vector cpl
of the filling p = is equal to so + s2 and the basis vector so E Go
appears in with coefficient 0,

The filling A gives rise to a 1-dimensional manifold F x with boundary
(Gi U Go) - Each Ai having the form g + h (mod Rsl) with
g, h E (Gi U gives rise to a component of ra homeomorphic
to ~0,1~ and connecting g with h. Each a2 having the form g (mod Rsl )
with g E (Gi U gives rise to a component of ra which
is a copy of where 0 is identified with g. Other Ai and in

particular ~1 do not contribute to Fx. The definition of a filling implies
that 8Fx = (Gi U Go) - Sol. Similarly, the filling ~p gives rise to a
1-dimensional manifold with boundary (Go U G2) - {~0~2}. We can
assume that rÀ and F. are disjoint. Gluing to along the canonical
identification Go - (so) - Go - g’, we obtain a 1-dimensional
manifold, r, with 8F = U (G2 - {~2}). Each component K
of r is glued from several components of F x II Fl. associated with certain
vectors Ai E V, c Al EB Ao C A and/or pj E V2 c Ao EB A2 c A. Let 1/;K E A
be the sum of these vectors. Observe that 1/;K E ( Vl + V2 ) n L; the inclusion
1/;K E L follows from two facts: (i) each point of .K n (Go - f so 1)
K n (Go - f s’ 1) is adjacent to one component of r A and to one component
of and (ii) so does not show up in and so does not show up in
(pj Set = Sl E A. Clearly, 1/;1 E (Vl + V2)nL.
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Set 0 - U FOKIK where K runs over the components of r with non-
void boundary. Let us check that C Al (D A2 is a filling of (Ti, T2).
Observe that for a compact component of F with endpoints g, h E GI uG2,
we have = g + h (mod Rs2 ) . For a non-compact component K
of r with one endpoint g E GI U G2, we have (mod Rsl -I- Rs2 ) .
Thus all vectors in the family 0 are short and their sum is equal to

¿9EGIUG2 g (mod Rs, -f- Rs2 ) . Also = Sl ~- s2 . This means that p(o)
is a filling of (Tl , T2 ) so that 0 satisfies all the required conditions. 0

7.3. Cobordism of based matrices.

Two based matrices Tl , T2 over R are cobordant = 0.

THEOREM 7.3.1. - (i) Cobordism is an equivalence relation on the
set of isomorphism classes of based matrices.

(ii) Homologous based matrices are cobordant.

(iii) The genus of a tuple of based matrices is a cobordism invariant.

(iv) A based matrix is cobordant to a trivial based matrix if and only if
it is hyperbolic.

Proof. (i) For a based matrix T = (G, s, b), the based matrix -T
is isomorphic to the triple (G’, s’, b’) where G’ - E G~ is a disjoint
copy of G and b’(g’, h’) - -b(g, h) for any g, h E G. Consider the filling
fg + 9’IgCG of the pair (T, -T). The matrix of this filling is 0. Therefore
a(T, - T) = 0 so that T is cobordant to itself. The symmetry of cobordism
follows from the = 

The transitivity of cobordism follows from the inequalities

which is a special case of Lemma 7.2.1.

(ii) Let a based matrix T’ be obtained from a based matrix

T = (G, s, b) by a move Mi with i = 1, 2, 3. We can assume that the

underlying set of T’ is a union of a disjoint copy C G} of G and
one new element g in the case i = 1, 2 or two new elements gl, g2 in

the case i = 3. For i = 1 (resp. i = 2, 3), the vectors ~h + and the

vector g (resp. g - s’, 91 + g2 - s’) form a filling of the pair (T, -T’). The
matrix of this filling is zero. Hence -T’) = 0 so that T is cobordant
to T’.
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(iii) We need to prove that o~ (Tl , ... , T~. ) is preserved when Tl , ... , T
are replaced with cobordant based matrices. By induction, it suffices
to prove for any based
matrix T" cobordant to Lemma 7.2.1 gives that

Similarly, one has Hence

(iv) If a based matrix T is cobordant to a trivial based matrix

To = = 0), then a(T) = a (To) = 0 and therefore T is hyperbolic.
Conversely, if T = (G, s, b) is hyperbolic, then it has a filling with zero
matrix. Adding to this filling the vector we obtain a filling of the
pair (T, To ) with zero matrix. Hence T is cobordant to -To = To. D

COROLLARY 7.3.2. - For any based matrices Tl , ... Tr over R, we

have a ((Ti)., ... , (Tr ). ) = a~ (Ti , ... , T~. ) .

7.4. Exercises.

1) Verify that the definitions of the genus of a (single) based matrix
over R given in Sections 7.1 and 7.2 are equivalent.

2) Prove that the function (Ti, T2) H -T2 ) defines a metric on
the set of cobordism classes of based matrices over R.

3) Prove that a~ (T1 , ... , Tv ) = a (Tl, ... , for any based matrices

Tl , ... , Tr over R.

4) Prove that for any 1  t  r and any based matrices Tl , ... , Tr,

5) Prove that U(Tl) + ... + u(Tr) = 0 for any hyperbolic tuple of based
matrices Tl , ... , Tr over R.
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8. Genus estimates and sliceness of strings.

8.1. Genus estimates for strings.

Setting R = Z, we can apply the definitions and results of Section 7
to the based matrices of strings. We begin with an estimate relating the
slice genus of strings to the genus of their based matrices.

LEMMA 8.1.1. - For any string 0152, uTe have

Proof. Equality a(T.(a)) = follows from Corollary 7.1.2.
We prove that a (T (a))  2 sg (a).

Consider an oriented 3-manifold M, a compact oriented surface F
of genus = sg(a) bounded by a circle S, and a proper map

úJ: F --7 M such that 8M is a (generic) closed curve

on 8M realizing a. Let in : H1 (~M) -~ be the inclusion homo-

morphism and w* : Hi(F) - be the homomorphism induced
by cv. Set L = C Hl(,9M). Since the intersection

form x HI ( 8M) --7 Z annihilates the kernel of in and

ranker (Hi (F))  rank HI (F) = 2k, we obtain that the rank of the bilinear
form B I L : L x L --7 Z is smaller than or equal to 4k.

Consider the based matrix T = T(a) = (G, s, b) of a. As in the
proof of Lemma 5.1.5, the map w gives rise to an involution v on the
set = arr (a) = G - f s 1. This defines a simple filling X of T
consisting of ~s~ and the orbits of v. The proof of Lemma 5.1.5 shows that

for any orbit X of v. The homology class [w(S)] E HI (8M)
also lies in L because in([aJ(S)]) = 0. The matrix of x is obtained by
evaluating B on the vectors and where X runs over

the orbits of v. Therefore the rank of this matrix is smaller than or equal
to rank(Bj )  4k. Hence (r(r)  2k = 2 sg(a). F-1

The following theorem provides an algebraic obstruction to the

sliceness of a string.

THEOREM 8.1.2. - For a slice string a, the based matrices T(a)
and T. (cx) are hyperbolic.
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This theorem is a direct consequence of the previous lemma and the
definitions. We complement this theorem with the following result whose
proof is postponed to Section 8.3.

THEOREM 8.1.3. - Based matrices of cobordant strings are cobordant.

8.2. Genus estimates for sequences of strings.

We generalize Lemma 8.1.1 to sequences of strings.

LEMMA 8.2.1. - For any strings c~1, ... , ,0~,

Proof. The equality a~(T,(al), ... , ,T.(c~.)) = o, (T (c, 1), . - - , T(aT))
follows from Corollary 7.3.2. The rest of the proof is similar to

the proof of Lemma 8.1.1. Consider an oriented 3-manifold M, a

compact (oriented) surface F of genus = sg(al, ... , cxr) bounded by r
circles S’1, ... , 8r, and a proper map F - M such that the maps

úJl St : 8t - aM with t = 1, ... , r are disjoint (generic) closed curves

on aM realizing c~l, ... , aT, respectively. Let in : H1 (M) be
the inclusion homomorphism and úJ*: Hi(F) - be the homo-

morphism induced by c~. The group H, (F) is generated by the homology
classes of 61,... 8r C F and a subgroup H C H1 ( F) isomorphic
to Set L = C Since the intersection form

B : HI x HI (o9M) --+ Z annihilates the kernel of in, we obtain that

For t = 1,..., r, consider the based matrix Tt - (Gt, st, bt) of

as. Set G - Ut Gt. As in the proof of Lemma 5.1.5, the map cv

gives rise to an involution v on the set ~ (cv (c~F) ) - G - ~s 1, ... , sr ~ .
The proof of Lemma 5.1.5 shows that for any orbit X of v, we have

Adding to an appropriate linear
combination Et of the homology classes ~cv(,S’1 )~, ... , ~cv(,S’r)~ in
Hl (aM) with nx,t E Z we obtain an element of L. Consider the vector

Et nx,tst in the lattice ZG freely generated by G. These vectors
corresponding to all orbits X of v together with the vector s, + ..- E ZG

form a filling of the tuple TI, ... , The matrix of this filling is obtained
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by evaluating B on the homology classes
and ~c,~ (,S’1 )~ ~ ~ ~ ~ -~- ~c,~ (,5’T )~ E HI (8M). Since all these homology

classes belong to L, the rank of this matrix is smaller than or equal to 4k.
Thus ~(T(cx1), ... , T(ar))  2 k = 2 sg(al, ... , ar). 0

THEOREM 8.2.2. - If a sequence of strings is slice, then the sequence
of their based matrices and the sequence of their primitive based matrices
are hyperbolic.

This theorem is a direct consequence of the previous lemma and the
definitions.

8.3. Proof of Theorem 8.1.3.

If strings a, 3 are cobordant, then = 0. By Lemma 8.2.1,
= 0. As we know, T(o = Thus,

a(T(a), -T (,C3)) = 0 so that T(a) is cobordant to 

8.4. Secondary obstructions to sliceness.

We introduce invariants of strings which may give further obstructions
to sliceness (cf. Question 2 in Section 13). Consider a string a with core
circle ,S’ and canonical realization S - E, as in Section 4.1. Let E be
the closed oriented surface obtained by gluing 2-disks to all components
of o~~a . Pick an integer p &#x3E; 2 and set R = Z/pZ and H = Hl (~; R) . The
R-module H is generated by the set s where the homology
classes of loops on E are taken with coefficients in R and s = H,
cf. Section 4.2. Consider the intersection form BR : H 0 H -~ R. For h E H,
consider the string ah formed by ,S’ and the arrows e E arr(a) such
that BR([e], h) = 0. The invariants of ah can be viewed as invariants of a
parametrized by p and h. In particular, we can consider the 1-variable
polynomial the based matrix T(ah), etc.

In the next lemma, a Lagrangian is a group L c H equal to its

annihilator Ann(L) = fg E HIBR(L,g) = 01. If p is prime, then each

Lagrangian L C H is a direct summand of H and L.

LEMMA 8.4.1. - If a is slice, then there is a Lagrangian L C H such
that s E L and the string ah is slice for all h E L. Moreover, there is an
involution on the set arr(a) such that for any its orbit .



2499

Proof. If a is slice, then there are a compact oriented 3-manifold M’
and a realization w’ : ,S’ -~ aM’ of a contractible in M’. The pair (~M’, w’)
can be obtained from w : S - E of a by I-surgeries on E - Attaching
the corresponding solid 1-handles to E x 0 c E x [0,1] we obtain an
oriented 3-manifold N such that aN = (-8M’) U E and the curves w’, w are
homotopic in N. Gluing N to M’ along we obtain a compact oriented
3-manifold M such that 8M = E and w is contractible in M. Consider

the boundary HI(8M;R) = H
and the inclusion homomorphism i : H = Set

L - Im(9) == Ker(i). It is well known that L is a Lagrangian. For

completeness, we outline a proof. An element g E H belongs to Ann(L)
if and only if BR ((9X, 9) - 0 for every x E H2 (M, aM; R) . By the
Poincar6 duality, there is a unique x E 
such that x = x n [M]. Then BR(8x,g) = x. i (g) = where. is the

intersection pairing H2 (M, x R. Therefore g E Ann(L)
if and only if i(g) is annihilated by all homomorphisms R.

This holds if and only if i (g) = 0, that is if and only if g E L.

Pick h E L and pick any x in a-1 (h) C H2(M,8M;R). The
cohomology class x E defines a p-fold covering M -~ M. Since
w : 5’ 2013~ E = aM is contractible in M, it lifts to a loop llJ : S - 8M
contractible in M. By the equality = BR (h, g) for g E H, the
underlying string of llJ is ah. Therefore ah is slice. Constructing an involution
on arr(a) as in the proof of Lemma 5.1.5 (where F is a 2-disk) we obtain
the last claim of the lemma. 0

This lemma implies that for all h E L, the based matrix T(ah) is

hyperbolic and u(ah) = 0.

9. Lie cobracket for strings.

We introduce a Lie cobracket in the free module generated by
homotopy classes of strings. This induces a Lie bracket in the module
of homotopy invariants of strings and other related algebraic structures.

Throughout the section, we fix a commutative ring with unit R.

9.1. Lie coalgebras.

We recall here the notion of a Lie coalgebra dual to the one of a Lie

algebra. To this end, we first reformulate the notion of a Lie algebra. For an
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R-module L, denote by PermL the permutation y0x in L®2 = L(DL
and by TL the permutation L03 = L ® L tg) L. Here
and below ® _ A Lie algebra over R is an R-module L endowed with an
R-homomorphism (the Lie bracket) 8 : L®2 ~ L such that 0 o PermL = -8
(antisymmetry) and

(the Jacobi identity). Dually, a Lie coalgebra over R is an R-module A
endowed with an R-homomorphism (the Lie cobracket) v : A --+ A®2 such
that PermA o v = - v and

For a Lie coalgebra (A, v : A ~ A®2) over R and an integer n &#x3E; 1, set

In particular, Vel) = v. Following [Tu2], Section 11, we call a Lie coalgebra
(A, v) over R spiral, if A is free as an R-module and the filtration
Ker vel) C Ker v~2&#x3E; C ~ ~ ~ exhausts A, i.e., A = Ker v(n).

A Lie coalgebra (A, v) gives rise to the dual Lie algebra A* =
R) where the Lie bracket A* 0 A* --~ A* is the homomorphism

dual to v. For u, v E A*, the value of [u, v] E A* on x E A is computed by

for any (finite) expansion ~ ~-

A homomorphism of Lie coalgebras (A, v) -~ (A’, v’) is an R-linear

homomorphism 0 : A --~ A’ such that (~ 0 0) v (a) = v’rØ ( a) for all a C A. It
is clear that the dual homomorphism 0*: (A’)* -~ A* is a homomorphism
of Lie algebras.

9.2. Lie coalgebra of strings.

Let S be the set of homotopy classes of virtual strings and let

so C S be its subset formed by the homotopically non-trivial classes.

Let Ao = be the free R-module freely generated by So. We shall
provide ,Ao with the structure of a Lie coalgebra.
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We begin with notation. For a string a, let (a) denote its class in So
if a is homotopically non-trivial and set (a) = 0 E .Ao if a is homotopically
trivial. For an arrow e = (a, b) of a string a, denote by ae the string
obtained from a by removing all arrows except those with both endpoints
in the interior of the arc ab. (In particular, e is removed.) Similarly, denote
by a e 2 the string obtained from a by removing all arrows except those with
both endpoints in the interior of ba. Set

LEMMA 9.2.1. - The R-linear homomorphism v : Ao - Ao Q9 Ao given
on the generators of Ao by Formula (9.2.1) is a well-defined Lie cobracket.
The Lie coalgebra (Ao,v) is spiral.

Proof. To show that v is well-defined we must verify that v((a))
does not change under the homotopy moves (a)s, (b)~, (c), on a. The arrow
added by (a) S contributes 0 to the cobracket by the definition of (.). The
contribution of all the other arrows is preserved. Similarly, the two arrows
added by (b) S contribute opposite terms to the cobracket which is therefore
preserved. Under (c)s, all arrows contribute the same before and after the
move.

The equality Perm,ao ov = -v is obvious. We now verify For-

mula (9.1.1). Let a be a string with core circle S. We can expand
as a sum of expressions z(e, f) associated with ordered

pairs of unlinked arrows e, f E arr(a). Note that the endpoints of e, f
split ,S’ into four arcs meeting only at their endpoints. The endpoints of e
(resp. f ) bound one of these arcs, say x (resp. y). The other two arcs form
S - (x U y) and lie "between" e and f. Denote by 0 (resp. ~, b) the string
obtained from a by removing all arrows except those with both endpoints
in the interior of x (resp. of y, of ,S’ - (x U y)). if e and f are
co-oriented, i.e., if their tails bound a component of S - (x U y). It is easy
to see that

A direct computation using this formula gives
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Thus id 193 +TAo -f- T~o annihilates (ido7,)(l,((c,))). Hence v is a

Lie cobracket. The spirality of (,,4.0, v) follows from the obvious fact

that v(n) ((a)) = 0 for any string a of rank  n. (Actually a stronger
assertion holds: v(n) ((a)) = 0 for any string a of rank  4n + 2.) 1:1

Let ..4 = be the free R-module freely generated by S. Since
S = So U where 0 E S is the homotopy class of a trivial string,
~4 = Ao (D RO. The Lie cobracket v in extends to ,,4, by v(O) = 0.

The Lie cobrackets in and A induce Lie brackets in A* 0
and ,,4* = Examples below show that these

Lie cobrackets and Lie brackets are non-zero. Clearly, ,,4.* = A* 0 E9 R where
the Lie bracket in R is zero. The elements of ,,4* bijectively correspond to
maps ? 2013~ R, i.e., to R-valued homotopy invariants of strings. Thus, such
invariants form a Lie algebra.

9.3. Examples.

1) If rank a  6, then ~((o~)) == 0. This follows from the fact that any
string of rank  2 is homotopically trivial.

2) For any p, q &#x3E; 1, we have = 0.

3) Consider the string cx~ of rank 7 where a is the permutation
(123)(4)(576) of the set {1, 2,.... 7}. It follows from the definitions that
v((aa)) = (al,2) (9 (01522,1) - (a2,I) (9 ~CY1~2&#x3E;. As we know, al,2 and a2,1
are homotopically non-trivial strings representing distinct generators of A.
Hence v ( (cx~ ) ) ~ 0. This example can be used to show that the product
of strings is not commutative even up to homotopy: there are strings q, 6
such that a product of q, 6 is not homotopic to a product of ~, ~y. Drawing
a picture of a, one observes that cx~ is a product of 6 = a2,1 with a

string, 1, of rank 4 obtained from a1,2 by adding a "small" arrow. Since 7
has a small arrow, it is easy to form a product of 1 with 6 also having a
small arrow. The resulting string, /3, is homotopic to a string of rank 6.

= 0. Therefore c~~ is not homotopic to ~3.

4) In generalization of the previous example pick any integers
p, q, p’, q’ &#x3E; 1 such that p + q &#x3E; 3, p’ + q’ &#x3E; 3. Consider the string a = a,
of rank m = p -~ q ~- p’ ~ q’ ~ 1 where a is the permutation of the set
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{1,2,..., m} defined by

It follows from the definitions that

Clearly, v((a)) ~4 0 unless p = p’ and q = q’.

5) Consider the numerical invariants ul, u2, ... E A* constructed in
Section 3.1. For p, p’ &#x3E; 1, we compute the value of [up, up,] E ,A* on
the string a = cx (p, p’, q, q’ ) defined in the previous example. Assume for
concreteness that the numbers p, p’, q, q’ are pairwise distinct. Then

Hence [up, up, 7~ 0 for p’.

9.4. Filtration of ,,40.

Assigning to a string its homotopy rang and homotopy genus (see
Section 2.5) we obtain two maps hr, hg : So - Z. For r, g &#x3E; 0, set

This set is finite since there is only a finite number of strings of rank  r.
The set Sr,g generates a submodule of ,A.o denoted This submodule is

a free R-module of Clearly,

Thus, each a Lie coalgebra. The inclusions Ar,,g, for

r  r’, g  g’ make the family into a direct spectrum of Lie

coalgebras. The equality Ur o Ar,g shows that = inj 

The Lie cobracket in induces a Lie bracket in =

R) . Formula (9.4.1) implies that this Lie algebra is nilpotent.
Restricting maps So - R to we obtain a Lie algebra homomorphism

~~- It is clear that Aô = proj 
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9.5. Relations with Lie coalgebras of curves.

Let E be a connected surface and 7r be the set of homotopy classes
of closed curves on E. (It can be identified with the set of conjugacy
classes in 7r = 7rl (~).) There is a sending each homotopy
class of curves into the homotopy class of the underlying strings. Clearly,
~(~r) = UrSr,g where g = g(E) is the genus of E. Observe that the mapping
class group of E acts on if in the obvious way and V) factors through the

projection of if to the set of orbits of this action.

Let Z = Z(R) be the free R-module with basis The S

induces an R-linear homomorphism Z - ,,4 whose image is equal to 

Composing this homomorphism with the projection ,,4 = Ao s3 RO - Ao
we obtain an R-linear homomorphism ~o : Z - Ao.

The author defined in [Tu2], Section 8 a structure of a spiral Lie
coalgebra in Z. (In fact Z is a Lie bialgebra, but we do not need it.)
A direct comparison of the definitions shows that the map uJo : Z - ,A.o is a

homomorphism of Lie coalgebras.

9.6. Associated algebraic structures.

In this section we suppose that R D Q. A spiral Lie coalgebra (A, v)
over R naturally gives rise to a group Exp A* and a Hopf algebra S(A)
over R, see [Tu2], Section 11. For completeness, we recall here these
constructions.

Observe first that the dual Lie algebra A* = HomR (A, R) has

the following completeness property. Consider the lower central series

A* = A*~1&#x3E; &#x3E; A* (2) D --- of A* where A*(’+’) = [A*(n), A*] for n &#x3E; 1.

Let a1, a2, ... E A* be an infinite sequence such that for any n &#x3E; 1 all

terms of the sequence starting from a certain place belong to ~4*M. Clearly,
if x E Ker yen) and a E A*~n+1~, then a(x) = 0. Since A = Un Ker 
the sum a(x) - al (x) + a2 (x) ~ ~ ~ ~ contains only a finite number of
non-zero terms for every x E A. Therefore a(x) is a well-defined element

of R. The formula x H a(x) : A - R defines an element of A* denoted
al + a2 + ... and called the (infinite) sum of a2,... A similar argument
shows that 0 and the natural Lie algebra homomorphism
A* -~ proj limn (A* /A* (n)) is an isomorphism.

For a, b E A*, consider the sum
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where the right-hand side is the Campbell-Hausdorff series for 
see [Se]. The resulting mapping p: A* x A* - A* is a group multiplication
in A*. Here a-I - -a and 0 is the group unit. The group (A*, /t) is

denoted Exp A*. Heuristically, this is the "Lie group" with Lie algebra A*.
The equality A* = implies that the group Exp A*
is pro-nilpotent.

Consider the symmetric (commutative and associative) algebra of A:

Here S° (A) - R, = A, and Sn (A) is the n-th symmetric tensor

power of A for n &#x3E; 2. The unit 1 E R = is the unit of S. The group

multiplication /~: A* x A* --~ A* induces a comultiplication S - ,5’ 0 ,S’ as

follows. Since A is a free R-module, the natural map A --~ (A*)* extends
to an embedding of ,S’ into the algebra of R-valued functions on A*. We
can identify ,S’ with the image of this embedding. Similarly, we can identify

,S’ with an algebra of R-valued functions on A* x A*. It is easy to observe
that for any XES, we have x 0 J-l E S’ 0 S. Indeed, it suffices to prove this
for x E A. Then x E Ker V(n) for some n so that x annihilates all but finite
number of terms of the Campbell-Hausdorff series. Our claim follows then
from the duality between the Lie bracket in A* and the Lie cobracket V.
For example, if n = 3 and v~2~ (x) _ 0 f3i ® 1i E A Q93, then

The formula A(z) = x 0 J-L defines a coassociative comultiplication in S.
It has a counit S - R defined as the projection to S° (A) = R. The antipode
S - ,S’ is the algebra homomorphism sending any x E A into -x c A.
A routine check shows that ,S is a (commutative) Hopf algebra. Heuristically,
it should be viewed as the Hopf algebra of R-valued functions on the group
Exp A* or as the Hopf dual of the universal enveloping algebra of A*.

The construction of Exp A* and ,S’(A) can be generalized as follows.
Pick h E R and observe that the mapping hv : ~4 2013~A (9 A is a Lie cobracket
in A. It induces the Lie bracket ~ , ~ h = h[, ] in A* where [, ] is the Lie bracket
induced by v. The corresponding multiplication Ph in A* is given by
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This multiplication makes A* into a group denoted Exph A* . As above,
Ph induces a comultiplication in the symmetric algebra ,S’ = S(A). This
makes ,S’ into a Hopf algebra over R denoted Sh (A) . For h = 1, we obtain
the same objects as in the previous paragraphs. Note for the record that for
any h c R, the formula a ~-4 ~:~4* 2013~ A* defines a group homomorphism
EXPH A* --~ Exp A*. If h c R is a non-zero-divisor, this homomorphism
is injective.

We can apply the constructions of this subsection to any h C R
and to the spiral Lie coalgebras considered above. The

equality ,,4 - Ao s3 R implies that Exph ,,4* = Exph Aô x R where
R is the additive group of R. The group EXPH and the Hopf
algebra are quotients of EXPh Aô and Sh(Ao), respectively.
The homomorphism uJo : Z - extends by multiplicativity to a Hopf
algebra homomorphism ,S’h(Z) ~ Sh(Ao). Dualizing 00, we obtain a

mapping ,~4.0 -~ Z* which is a Lie algebra homomorphism and at the
same time a group homomorphism ExPh ,,4.0 -~ EXPH Z*.

10. Virtual strings versus virtual knots.

Virtual knots were introduced by L. Kauffman [Ka] as a generalization
of classical knots. We relate them to virtual strings by showing that each
virtual knot gives rise to a polynomial on virtual strings with coefficients
in the ring Q[z]. As a technical tool, we introduce a skein algebra of virtual
knots and compute it in terms of strings.

10.1. Virtual knots.

We define virtual knots in terms of arrow diagrams following [GPV].
An arrow diagram is a virtual string whose arrows are endowed with signs ~.
By the core circle and the endpoints of an arrow diagram, we mean the
core circle and the endpoints of the underlying virtual string. The sign
of an arrow e of an arrow diagram is denoted sign(e). Homeomorphisms
of arrow diagrams are defined as the homeomorphisms of the underlying
strings preserving the signs of all arrows. The homeomorphism classes of
arrow diagrams will be also called arrow diagrams.

We describe three moves (a)ad, (b)ad, (c)ad on arrow diagrams where
"ad" stands for "arrow diagram" . Let a be an arrow diagram with core circle
S. Pick two distinct points a, b E ~S’ such that the (positively oriented) arc
ab C ,5’ is disjoint from the set of endpoints of a. The move (a)ad adds to a
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the arrow (a, b) with sign + or -. This move has two forms determined by
the sign ~. The move (b)ad acts on a as follows. Pick two arcs on ,S’ disjoint
from each other and from the endpoints of a. Let a, a’ be the endpoints of
the first arc (in an arbitrary order) and b, b’ be the endpoints of the second
arc. The move adds to a two arrows (a, b) and (b’, a’) with opposite signs.
This move has eight forms depending on the choice of the sign of (a, b),
two possible choices for a, and two possible choices for b. (This list of eight
forms of (b)ad contains two equivalent pairs so that in fact the move (b)ad
has only six forms.) The move (c)ad applies to a when a has three arrows
with signs ((a+, b), +), ((b+, c), +), ((c+, a), -) where a, a+, b, b+, c, c+ E S
such that the arcs aa+, bb+, cc+ are disjoint from each other and from the
other endpoints of a. The move (c)ad replaces these three arrows with the
arrows ((a, b+), +), ((b, c+), +), ((c, a+), -). °

By definition, a virtual knot is an equivalence class of arrow diagrams
with respect to the equivalence relation generated by the moves (a)ad,
(b)ad, (c)ad and homeomorphisms. Note that our set of moves is somewhat
different from the one in [GPV] but generates the same equivalence relation
(cf. below).

In the sequel the virtual knot represented by an arrow diagram D will
be denoted [D]. A trivial arrow diagram having no arrows represents the
trivial virtual knot.

Forgetting the signs of arrows, we can associate with any arrow

diagram D its underlying virtual string D. This induces a "forgetting"
map K - K from the set of virtual knots into the set of virtual strings.
This map is surjective bur not injective. The theory of virtual knots is

considerably reacher than the theory of virtual strings. For instance, the
fundamental group of a virtual knot [Ka] allows to distinguish virtual knots
with the same underlying strings.

Note finally that the definition of an r-th covering of a string in
Section 3.6 extends to virtual knots: one keeps only arrows e of an arrow

diagram such that n(e) E rZ and of course one keeps their signs.

10.2. From knots to virtual knots.

Arrow diagrams are closely related to the standard knot diagrams
on surfaces. An (oriented) knot diagram on an (oriented) surface E is a

(generic oriented) closed curve on E such that at each its double point one
of the branches of the curve passing through this point is distinguished.
The distinguished branch is called an overcrossing while the second branch
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passing through the same point is called an undercrossing. A knot diagram
on E = E x ~0~ determines an (oriented) knot in the cylinder E x R by
pushing the overcrossings into E x (0, oo).

Any knot diagram d gives rise to an arrow diagram D(d) as follows.
First of all, the closed curve underlying d gives rise to a virtual string,
see Section 2.2. We provide each arrow of this string with the sign of the
corresponding double point of d. This sign is + (resp. -) if the pair (a
positive tangent vector to the overcrossing branch, a positive tangent vector
to the undercrossing branch) is positive (resp. negative) with respect to
the orientation of ~. Our definition of the arrow diagram associated with d
differs from the one in [GPV]: their arrow diagram is obtained from ours
by reversing all arrows with sign -.

There is a canonical mapping from the set of isotopy classes of

(oriented) knots in E x R into the set of virtual knots. It assigns to a
knot C E x R the virtual knot [D(d)] where d is a knot diagram on E
presenting a knot in E x R isotopic to K. The virtual knot [D(d)] does not
depend on the choice of d. This follows from the fact that two knot diagrams
on E presenting isotopic knots in E x R can be obtained from each other

by ambient isotopy in E and the Reidemeister moves. Recall the standard
list of the Reidemeister moves: 1) a move adding a twist on the right (resp.
left) of a branch; 2) a move pushing a branch over another branch and
creating two crossings; 3) a move pushing a branch over a crossing. This
list is redundant. In particular, the left move of type 1) can be presented as
a composition of type 2) moves and the inverse to a right move of type 1 ) .
One move of type 3) together with moves of type 2) is sufficient to generate
all moves of type 3) corresponding to various orientations on the branches
(see, for instance, [Tul], pp. 543-544). As the generating move of type 3) we
take the move (c) - described in Section 2.3. It remains to observe that the
moves (a)ad, (b)ad, (c)ad on arrow diagrams are exactly the moves induced
by the right Reidemeister moves of type 1), the Reidemeister moves of
type 2), and the move (c)-.

10.3. Skein algebra of virtual knots:

Let R = ~ ~z~ be the ring of polynomials in one variable z with rational
coefficients. Consider the polynomial algebra R[IC] generated by the set of
virtual knots /C. This is a commutative associative algebra with unit whose
elements are polynomials in elements of /C with coefficients in R. We now
introduce certain elements of R[IC] called skein relations.
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Pick an arrow diagram D with core circle ,S’ and pick an arrow
e = (a, b) of D with sign + (here a, b E S). Let De be the same arrow
diagram with the sign of e changed to . Let D’ be the arrow diagram
obtained from D by removing all arrows with at least one endpoint on the
arc ba c S. Let D~ be the arrow diagram obtained from D by removing
all arrows with at least one endpoint on the arc ab C S. The skein relation
corresponding to (D, e) is

The ideal of the algebra generated by the trivial virtual knot and
the skein relations (determined by all the pairs (D, e) as above) is called

the skein ideal. The quotient of R[ K] by this ideal is called the skein algebra
of virtual knots. and denoted S. The next theorem computes E in terms of
strings. Recall the set So of non-trivial homotopy classes of virtual strings,
cf. Section 9.2.

THEOREM 10.3.1. - There is a canonical R-algebra isomorphism
B7: £ --+ R[So] where R[So] is the polynomial algebra generated by So.

This theorem allows us to associate with any virtual knot K a

polynomial V(K) E R[So]. It will be clear from the definitions that

where V n(K) is a homogeneous element of of degree n which is non-
zero only for a finite set of n. Combining V with homotopy invariants of
strings we obtain invariants of virtual knots. For example, composing V with
the algebra homomorphism R[So] - R[t] sending the homotopy class of a
string a into the polynomial u(a)(t), we obtain an algebra homomorphism
? 2013~ R[t] = Q[z, t]. This gives a 2-variable polynomial invariant of virtual
knots. Further polynomial invariants of virtual knots can be similarly
obtained from the higher u-polynomials defined in Section 3.6.

The constructions above can be applied to the virtual knot derived
from a geometric knot c 1: x R in Section 10.2. The resulting polynomial
V(K) E R[So] is invariant under the action on knots of orientation

preserving homeomorphisms 1: x R ~ 1: x R induced by orientation

preserving homeomorphisms ~ ~ ~. The polynomial is interesting
only in the case when the genus of 1: is at least 2. This is due to the fact that
the strings realized by curves on a surface of genus 0 or 1 are homotopically
trivial.
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Theorem 10.3.1 will be proven in the next section. Here we give an
explicit expression for the value of V on the generator [D] E E represented
by an arrow diagram D. We need a few definitions. The endpoints of
the arrows of D split the core circle of D into (oriented) arcs called the
edges of D. Denote the set of edges of D by edg(D). Each endpoint a of an
arrow of D is adjacent to two edges a-, a+ E edg(D), respectively incoming
and outgoing with respect to a. For an integer n &#x3E; 1, an n-labeling of D is a
map f : edg(D) - f 1, 2,..., nj satisfying the following condition: for any
arrow e = (a, b) of D, either

or

and sign

The arrows e as in (ii) are called f-cutting arrows. The number of
f-cutting arrows of D is denoted f ~ I and the number of f-cutting arrows
of D with sign = -1 is denoted Note that the value of f on two
adjacent edges a-, a+ E edg(D) may differ only when a is an endpoint of an
f-cutting arrow. Therefore f ~ &#x3E; ~ f (edg(D)) -1. For i = 1, ... , n, let D f,i
be the string obtained from D by removing all arrows except the arrows
(a, b) with f (a+ ) = f (a_ ) = f (b~ ) = f (b_ ) = i (and forgetting the signs of
the arrows).

Let lbln(D) be the set of n-labelings f of D such that f (edg(D))
{1,...,?~}, f ~ I - n - 1, and the f-cutting arrows of D are pairwise unlinked
(in the sense of Section 3.1). Then

The expression on the right-hand side is finite since 0 for
n &#x3E; # edg(D). The set lbli (D) consists of only one element f = 1 so that
the free term of V([D]) is ~D) .

11. Proof of Theorem 10.3.1.

The proof of Theorem 10.3.1 largely follows the proof of Theorems 9.2
and 13.2 in [Tu2]. We therefore expose only the main lines of the proof.
The key point behind Theorem 10.3.1 is the existence of a natural

comultiplication in E and we define it first. Then we construct V and

prove that it is an isomorphism.
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11.1. Comultiplication inE.

We need to study more extensively the labelings of arrow diagrams
defined at the end of the previous section. Let D be an arrow diagram
with core circle S. Each n-labeling f of D gives rise to n monomials

D f,1, ... , D f,n E E as follows. Identifying a = b for every f-cutting arrow
(a, b) of D, we transform S into a 4-valent graph, Ff, with I vertices.

The projection S - hf maps the non- f-cutting arrows of D into "arrows"
on ]Ff, i.e., into ordered pairs of (distinct) generic points of Ff. The labeling
f induces a labeling of the edges of Ff by the numbers 1, 2,..., n. It follows
from the definition of a labeling that for each i = 1,..., n, the union of edges
of Ff labeled with i is a disjoint union of ri = ri ( f ) &#x3E; 0 circles ,S’1, ... , 8;t .
The orientation of S induces an orientation of the edges of h f and of these
circles. We transform each circle 5~ withj = 1,..., ri into an arrow diagram
by adding to it all the arrows of Ff with both endpoints on 8J. The signs of
these arrows are by definition the signs of the corresponding non- f -cutting
arrows of D. Set

For any n &#x3E; 2, denote Lbln (D) the set of n-labelings f of D such that
the f-cutting arrows of D are pairwise unlinked. The latter condition can
be reformulated in terms of the numbers rl ( f ), ... , rn ( f ) introduced above:
f E Lbln (D) if and only if = If + 1. For f E Lbln (D) ,
set

where is the tensor product over R of n copies of ~.

By a comultiplication in ~, we mean a coassociative algebra
homomorphism 0 : ~ ~ £0£. (The coassociativity means that (id 
(0 ® id)A.) We claim that the formula

extends by multiplicativity to a well-defined comultiplication in S. This can
be deduced from [Tu2], Theorem 9.2 or proven directly repeating the same
arguments. We explain how to deduce our claim from [Tu2]. Comparing
the definition of 0( ~D~ ) with the comultiplication in the algebra of skein
classes of knots in (a surface) x R given in [Tu2], we observe that they
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correspond to each other provided D underlies a knot diagram on the
surface. (The variables h = hl, h = used in [Tu2] should be replaced
with 0 and z, respectively. After the substitution h = 0, we can consider
only labelings satifying - in the notation of [Tu2] - the condition I I f I = -If I
which translates here as the assumption that the f-cutting arrows of D
are pairwise unlinked.) The results of [Tu2] imply that if a move (a)ad,
(b) ad, (c) ad on D underlies a Reidemeister move on a knot diagram,
then A([D]) is preserved under this move. Since any arrow diagram D
underlies a knot diagram on a surface and any move (a)ad, (b)ad, (c)ad
on D can be induced by a Reidemeister move, we conclude that 0 ( ~D~ ) is
invariant under the moves (a)ad, (b)ad, (c)ad on D. Therefore the formula
[D] H A([D]) yields a well-defined mapping IC ~ £0£. This mapping
uniquely extends to an algebra homomorphism R[X§] - £0£. The results
of [Tu2] imply that for an arrow diagram D underlying a knot diagram
on a surface and any arrow e of D with sign(e) = +, the skein relation

lies in the kernel of the latter homomorphism. The
condition that D underlies a knot diagram is verified for all D. Therefore
the homomorphism R~IC~ --~ £0£ annihilates the skein ideal and induces
an algebra homomorphism The coassociativity of A follows
from the easy formulas

(cf. [Tu2], p. 665). More generally, for any n &#x3E; 2, the value on [D] E E of
the iterated homomorphism

is computed by

Note for the record that each arrow diagram D admits constant 2-labelings
f l, f2 taking values 1, 2 on all edges, respectively. The corresponding
summands of A ([D]) are A(D, /i) = [D] ® 1 and A(D, f2) = 1 &#x26; [D].

11.2. Homomorphism V : E ~ R[So].
There are two obvious R-linear hornornorphisms £ : S - R and

q : ~ --~ The homomorphism E sends 1 e S into 1 C R and sends
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all virtual knots and their non-void products into 0. The homomorphism q
sends 1 and all products of &#x3E; 2 virtual knots into 0 and sends a virtual

knot K into (K~ . Tensorizing q with itself, we obtain for all n &#x3E; 1 a

homomorphism q0n: £0n ---~ Let sn : R[So]0n - R[So] be the
R-linear homomorphism sending al 0 - - - © an into (n!)-lal ... an. Set

where A(’) &#x3E; = A. It is clear that V is R-linear. The same argument
as in [Tu2], Lemma 13.4 shows that V is an algebra homomorphism.
Computing V on the skein class of an arrow diagram D, we obtain

Note that q(D f,2) = 0 unless ri(f) = 1 in which case q(D f,2) = (I2¡,i). For a
labeling f E Lbln (D) the equalities rl ( f ) = ... = rn ( f ) = 1 are equivalent
to the inclusion f E lbln (D) . This yields Formula (10.3.1).

Observe that V([D]) is a sum of (D) and a polynomial in strings of
rank  rank D. An induction on the rank of strings shows that the image
of V contains all strings. Therefore V is surjective.

The proof of the injectivity of V is based on the following lemma.

LEMMA 11.2.1. - There is a Q-valued function r~ on the set of

isomorphism classes of (finite) oriented trees such that the following holds:

(i) if T is a tree with one vertex and no edges, then q (T) = 1;

(ii) if an oriented tree T’ (resp. U) is obtained from an oriented tree

T by reversing the orientation of an edge e (resp. by contracting e into
a point), then + 77(T’) + r¡(U) = 0;

(iii) if an oriented tree T’ (resp. T") is obtained from an oriented tree T
by replacing two distinct edges with common origin ab,ac by ab, bc (resp.
by ac,cb) and if U is obtained from T by identifying b with c and ab with ac,
then
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In this lemma by an edge ab we mean an oriented edge directed
from a to b.

Lemma 11.2.1 was first established in [Tu2], Theorem 14.1 where it
is also shown that q is unique (we shall not need this). The construction
in [Tu2] is indirect and does not provide an explicit formula for 1]. Such

a formula was pointed out by Franqois Jaeger [Ja]. The following proof of
Lemma 11.2.1 is a simplified version of the proof given by Jaeger [Ja].

Proof. By a forest we shall mean a disjoint union of a finite
family of finite oriented trees. The set of vertices of a forest F is denoted

V (F) ..For a forest F and an integer n &#x3E; 1, denote by Cn(F) the set of
surjective mappings f : Tl (F) ~ ~ 1, ... , n~ such that for every edge ab of F
we have f (a)  f (b). This set is empty for n &#x3E; # (V (F)). Set

We claim that q satisfies all the conditions of the lemma. Condition (i)
is obvious. Condition (iii) is a direct corollary of the definitions.

Indeed for all n, the set splits as a disjoint union of the sets

Hence #(C,,(T)) = #(Cn(T’)) + #(C,,,(T")) +
~(Cn(U)) and 77(T) = r~(T’) -f- r~(T") + 17(U). It remains to verify (ii). Let
F be obtained from T by removing the interior of the edge e. For all n, the
set Cn(F) splits as a disjoint union of the sets Cn(T), Cn(T’), Cn(U).
Hence #(Cn(F)) = #(Cn(T)) + #(Cn(T’)) + #(Cn(U)) and 17(F) =

+ n (T’) -f- q (U). Thus we need only to prove that 17(F) = 0 for

every forest F with two components Tl , T2.

For non-negative integers denote by Cn (k1 , k2) the set of pairs
(£ 1, ~2 ) where for i = 1, 2, fi is an order-preserving injection from {1,..., 
into and Having
g1 E Ck, (T1 ), 92 E Ck2 (T2) and having £2) E Cn(k1, k2) we define
a mapping f = /(~i~2~i~2):V(F) -~ {l,...,~} by f(v) = 
for v E V(Ti) and f(v) = for v E V(T2). Clearly, f E Cn(F).
It is obvious that any f E Cn(F) can be uniquely presented in the

form f = f(g1 &#x3E; g2&#x3E; 1 &#x3E; 2) where gi E with # ( f (Y (Ti ) ) ) &#x3E; 1
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for i = 1, 2. Therefore

Thus it is enough to prove that for all 1~1 &#x3E; 1, k2 &#x3E; 1, the numbers

c~i,~) = #(~(~1,~2)) verify

Clearly, cn(k1,k2) is the number of pairs (81,82) where ,S’1, ,S’2 are subsets
of such that u 52 = #(81) = #(~2) == 1~2. In
particular, k2) = 0 if k1 + 1~2  n or I~1 &#x3E; n or ~2 &#x3E; n. For any n &#x3E; 1

and commuting variables x, y,

Therefore

Since

the terms with ~1 &#x3E; 1, k2 &#x3E; 1 in the above series must vanish. This gives
Formula ( 11. 2 .1 ) . 0
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11.3. The injectivity of V : S - R~So~ .
We begin by associating with any virtual string a an element ((a) E S.

Let ,5’ be the core circle of a. A surgery along an arrow (a, b) E arr(cx) consists
in picking two (positively oriented) arcs aa+, bb+ C ,S’ and then quotienting
the complement of their interiors S - U by a = b+, b = a+ .
It is understood that the arcs aa+, bb+ are small enough not to contain
endpoints of a besides a, b, respectively. Such a surgery transforms ,S’ into

two disjoint oriented circles. We make each of them into a string by adding
all the arrows of a with both endpoints on the arc a+b (resp. on ba+). (The
arrows of a with one endpoint on ab and the other one on ba disappear
under surgery.)

Let us call a set F C arr(a) special if the arrows of a belonging to F are
pairwise unlinked. Applying surgery inductively to all arrows of a belonging
to a special set F, we transform on into n = #(F) + I strings. Providing
all the arrows of these strings with sign +, we obtain n arrow diagrams
D1 , ... , Dn . Note that they have together at most #(arr(a)) - #(F)
arrows. We now define an oriented graph FF. The vertices of rp are the
symbols vl , ... , vn . Two verices vi, vj are related by an oriented edge leading
from vi to vj if there is an arrow (a, b) C F such that the arcs aa+, bb+ C S
involved in the surgery along this arrow lie on the core circles of DF, D~ ,
respectively. It is easy to see that hF is a tree. Set

where F runs over all special subsets of arr(a) . The summand corresponding
to F = 0 is the string a itself with sign + on all arrows.

The key property of ~(a) is its invariance under the basic

homotopy moves on a. This follows from [Tu2], Lemma 15.1.1 in the

case where the moves are realized geometrically by homotopy of a curve
realizing a on a surface. Since the homotopy moves can be always realized
geometrically, the result follows. The mapping a - ((a) extends by
multiplicativity to an algebra homomorphism R[So] - S denoted also (.

We can now prove the injectivity of V. For r &#x3E; 0, denote by Br
the R-submodule of E additively generated by monomials [Di][D2]’ - - 
such that the total number of arrows in the arrow diagrams D1, D2, ... , Dn
is less than or equal to r. Clearly, 0 = Bo C Bl C ... and Ur Br = E. Pick
b = [Dl] [D2] ... E Br. Using the skein relation in E it is easy to see
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that b E does not depend on the signs of the arrows
of D1, ... , Dn . This observation, Formula ( 10. 3.1 ) and the definition of (
imply that ((V)(b) - b E Br-1. Therefore ((V - id) (b) = 0. The inclusion
b E Ker i7 would imply b = 0. Thus Br n Ker B7 = 0. Since S,
we obtain Ker V = 0.

11.4. More on S.

The comultiplication A defined in Section 11.1 makes 9 into a Hopf
algebra over R. Its counit is the homomorphism c: ? 2013~ R used in the
definition of V. For an arrow diagram D, denote by D the same diagram
with opposite signs on all arrows. The transformation [D] - - [D] preserves
the skein relation and therefore induces an algebra automorphism of S. This
automorphism is an antipode for E. This follows from the corresponding
theorem for the skein algebras of curves on surfaces conjectured in [Tu2]
and proven in [CR] and independently in [Pr]. In the construction of the
Hopf algebra.E instead of the ground ring R = Q[~] we can use Z[z]. It is
only to construct the homomorphisms V and ( that we need Q.

Consider the Hopf algebra derived as in Section 9.6 from the

spiral Lie coalgebra Ao, the ring R = Q[z] and the element h = z E R.
Note that Sh(Ao) = R[So] as algebras.

THEOREM 11.4.1. - The homomorphism B7: £ -+ R[So] = Sz(Ao) is
an isomorpllism of Hopf algebras.

The proof of this theorem follows the lines of [Tu2], Section 12 and
Lemma 13.5; we omit the details.

12. Open strings.

12.1. Definitions.

Replacing the circle in the definition of a virtual string by an oriented
one-dimensional manifold X we obtain a virtual string with core manifold X.
The definition of homotopy extends to strings with core manifold X word
for word. Of special interest are strings with core manifold homeomorphic
to [0, 1] ; we call them open strings. In this context it is natural to call

virtual strings with core manifold homeomorphic to closed strings.

Open strings underlie (generic) paths on surfaces connecting distinct
points on the boundary. Gluing the endpoints of the core interval, we can
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transform any open string u into a closed string Mcl, its closure. Similarly to
paths, open strings can be multiplied via the gluing of their core intervals
along one endpoint. Repeating word for word the definitions of Section 3.6
we obtain for all r &#x3E; 1 the notion of an r-th covering of an open string (this
is again an open string).

12.2. Polynomials of open strings.

For an open string u with core manifold [0,1], we can define two
polynomials u+(p) and u-(tt). Observe that the set arr(¡.,t) of arrows of p
is a disjoint union arr+ (¡.,t) U arr- (/-t) where arr+ (/-t) (resp. arr- (~C) ) is the

set of arrows (a, b) E arr(p) with a, b E [0, 1] such that a  b (resp. b  a).
For e E set n(e) = n(ec) where eel is the corresponding arrow
of P". For 1~ &#x3E; 1, set

This number .and the polynomials u~ (~) - homotopy
invariants of Clearly, + u-(¡.,t) and u*(&#x3E;v) = +

u~ (v) for any open strings p, v. Using u~, it is easy to give examples of
non-homotopic open strings with homotopic closures. Using the coverings
as in Section 3.6, we can define for open strings "higher versions" of u±
parametrized by finite sequences of positive integers.

12.3. Cobordism of open strings.

An open string p is slice if its closure ¡.,tel is a slice (closed) string.
Theorem 5.1.2 implies that the sliceness is a homotopy property of open
strings.

An open string p is ribbon if its core interval admits an orientation
reversing involution transforming arrows of ti into arrows of p with opposite
orientation. The closure of a ribbon open string is a ribbon (closed) string.
Therefore ribbon open strings are slice.

We associate with every open string p an open string ,a’ obtained
from p by reversing orientation on the core interval and on all arrows.

Clearly (¡.,t’)’ = 1-t and (~.cv)’ - vp’ for any open strings /i, v.

We say that open strings ¡.,t, v are cobordant and write ¡.,t -c v if pv’ is
slice. An open string is cobordant to a trivial open string (with no arrows)
if and only if it is slice.
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LEMMA 12.3.1. - (i) Cobordism is an equivalence relation on the set
of open strings.

(ii) Homotopic open strings are cobordant.

(iii) If two open strings are cobordant, then their closures are cobordant.

(iv) If two open strings are cobordant, then their r-th coverings are
cobordant for all r &#x3E; 1.

Proof. For any open string p, the product tLp’ is ribbon and

therefore slice. Thus p -c p. If p -c v, then (pv’)cl is slice. The closed

string is obtained from = by the involution a ~ a - .
Hence is slice and v -c ¡.,t.

To proceed we need the following property: if p, v, 6 are open strings
whose product is slice and if v is slice, then so is p6. Indeed, observe
that (pv6)cl is homeomorphic to Since (v6p)" is a product of
vel and (6p)cl, the cancellation property mentioned in Section 5.2 implies
that (6p)cl is slice. Since (6p)cl is homeomorphic to then latter string
is slice. Hence iL6 is slice.

We can now prove the transitivity of cobordism. If ~c -c v, v ~,
then pv’ and v6’ are slice. Since products of slice closed strings are slice,
the products of slice open strings are slice. Thus, is slice. Since v’v

is slice, so is p6’. Therefore p -c 6.

If p is homotopic to v, then is homotopic to Therefore

(Av’)cl is slice so that -c v. This proves (ii). We leave (iii) and (iv) as an
exercise for the reader. D

Multiplication of open strings induces a multiplication in the set of
cobordism classes of open strings that makes this set into a group denoted 0.

Using the formulas ul (p) = -u’ (p) and Theorem 5.1.4 we obtain that
u(¡.,tel) = u+ (~c) + u- (~C) E Z[t] is an additive cobordism invariant of open

strings.

12.4. Graded based matrices.

A graded (skew- symmetric) based matrix over an abelian group H is
a based (skew-symmetric) matrix (G, s, b) over H endowed with a spltting
of G - Isl as a union of two disjoint subsets G+ and G-. The underlying
based matrix of a graded based matrix (G, s, b) is obtained by forgetting the
splitting G - {s} = G+ U G-. The negation -T of T = (G, s, b) is the triple
(G, s, -b) with the same splitting G - Isl = G+ U G-.
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We define annihilating elements, core elements, and complementary
elements of a graded based matrix T = (G, s, b) as in Section 6.1 with the
following additional requirements: annihilating elements must lie in G+,
core elements must lie in G- and for any pair of complementary elements,
one of them lies in G+ and the second one in G-. All other dfefinitions
and results of Section 6.1 extend to this setting with obvious changes. In
particular, we have a notion of homology for graded based matrices over H.

If H C R, then the two I-variable polynomials

are homology invariants of a graded based matrix T = (G, s, b).
For an open string p, the based matrix of its closure tic’ is graded via

the splitting arr(pc’) = arr(/,t) = U This defines a graded
based matrix T(p) over Z. The homology class of T(li) is an invariant

of the homotopy class of Clearly, u~ (~) - Note also that

T(p’) = 

12.5. Addition of graded based matrices.

We define addition for graded based matrices which mimics the
product of strings. Let Ti = (Gi, si, bi) be a graded based matrix over an
abelian group H where i = 1, 2. We define the sum Ti0?2 = (G, s, b)
as follows. Set G~ = G’ LI G’ and G = ~s~ II G+ II G-. For

g E G - ~ s ~ = G+ II G-, set 1 if g E G+ 0 if g E G-.
The skew-symmetric mapping b : G x G - H is defined as follows: for

g E Gi - fsil with i E {1,2}, set b(s, g) = bi(g, si);
for any g E Gi - E Gj - fsjl with i, j E fl,21, set

if

if

The direct sum of graded based matrices is commutative and associative

(up to isomorphism).
Let R be a domain. A graded based matrix over R is hyperbolic if its

underlying based matrix is hyperbolic.

LEMMA 12.5.1. - For any graded based matrix over R, its direct sum
with its negation is hyperbolic. The direct sum of two hyperbolic graded
based matrices over R is hyperbolic.
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Proof. -- Let Ti = (G1, si, b1) be a graded based matrix over R.
Let T2 = (G2, S2, b2) be a copy of Tl where G2 = s2 = (Sl)’,
and b2 is defined by b2 (g’, h’) = b(g, h) for g, h E Gi. We verify that
the direct sum T = Ti o (-T2 ) - (G, s, b) is hyperbolic. Consider the
subsets fsl and of G. These subsets form a simple filling
of G. The matrix of this filling is zero. Indeed, for g E Gl - 

For g, h E G1 - 

The second claim of the lemma is an exercise on the definitions; we leave it
to the reader. 0

Quotienting the monoid of graded based matrices over R by hyperbolic
matrices, we obtain an abelian group C(R). We call it the group of
cobordisms of graded based matrices over R.

Assigning to an open string its graded based matrix we obtain
an additive homomorphism 0 ---t Q(Z). The is non-trivial.

This is clear from the existence of non-trivial additive homomorphisms
~~ : ~ (~) -~ ~ [t] .

The notion of a graded based matrix over R and the addition of
such matrices may seem artificial from the algebraic viewpoint. Possibly, a
more satisfactory (although equivalent) language would describe a graded
based matrix over R as a free R-module V of finite rank endowed with a

vector in the dual module V* = HomR(Y, R), with a distinguished basis
partitioned into two disjoint subsets, and with a R-valued skew-symmetric
bilinear form V x V - R. To pass from the definition above to this one, we

associate with (G, s, b) the free R-module V with basis G - ~s~, the element
of V* sending any g E G - {5} to b(s, g), the partition G - Isl = G+ U G-,
and the skew-symmetric bilinear form V x V - R induced by b.
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12.6. The algebra of open strings.

Let R be a commutative ring with unit and ® _ Q9R. A (left) module
over a Lie algebra (L, [, ] : L®2 -~ L) over R is an R-module M endowed
with an R-linear homomorphism p : L Q9 M - M such that

where PermL is the permutation Lfi!)2. (Formula
(12.6.1) is equivalent to the usual identity ~x, y~ m - x(ym) - y (xm) for
x, y E L, m E M. ) Dually, a comodule over a Lie coalgebra (A, v : A - ~4~)
over R is an R-module M endowed with an R-linear homomorphism
p : M --~ A Q9 M such that

Such M is automatically a module over the dual Lie algebra A* =
HomR (M, R) : an element a E A* acts on M by the endomorphism
pa : M --~ M sending m C M to - (a Q9 idM ) p(m) E R Q9 M = M.

A comodule (M, p) over a Lie coalgebra A is spriral if M =

Ker pen) where

If R D Q and A, M are spiral, then the action of A* on M integrates into a
group action of the group Exp A* on M: an element a E Exp A* = A* acts
on m E M by

Note that for m E Ker pen) the sum on the right-hand side has at most n
non-zero terms.

Let A~ == M (R) be the free R-module freely generated by the set of
homotopy classes of open virtual strings. We provide with the structure

of a comodule over the Lie coalgebra of closed strings At - Let (p) be the
generator of M represented by an open string /-t. For an arrow e E arr( p) , a
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surgery along e defined as in Section 11.3 transforms p into a disjoint union
of a closed string ae and an open string !3e. Set

A direct computation shows that this gives a well-defined R-linear

homomorphism ,,4.0 satisfying Formula (12.6.2). Thus .M
is a comodule over Ao. Combining p with the inclusion ,A.o we obtain

that M is a comodule over ,,4 as well. It is easy to see that M is spiral. If
R D Q, then the construction above gives a group action of on 

12.7. Exercises.

1) Multiplication of open strings makes .~l into an associative

algebra with unit. Check that the group ExpA* acts on J~l by algebra
automorphisms.

2) Let cl:.M 2013~ be the R-linear homomorphism induced by
closing open strings. Check that for any open string p, we have

= PermA) (idA 

13. Questions.

1) Which primitive based matrices T, can be realized as T. (a) for a
string a? A necessary condition pointed out in Section 3.2 says that

(u(T.))’(1) = 0. Note that for the based matrix T(a) = (G, s, b), we have
I  #(G) - 2 for all e, f E G. This however yields no conditions on

the primitive based matrices of strings, since such a matrix T. = (G., s., b, )
may arise from a string of a rank » ~ (G, ) .

2) Can one detect non-slice strings with hyperbolic based matrices
using the secondary obstructions of Section 8.4?

3) Is it true that slice strings are stably ribbon, i.e., that for any
slice string a there is a ribbon string 13 such that a product of a and (3 is
homotopic to a ribbon string? Is it true for open strings? A positive answer
to the second question would imply a positive answer to the first question.

4) Classify all strings of small rank (say,  6) up to homotopy and/or
up to cobordism.

5) Is it true that every string is homotopic to a string of type aa for
some permutation ~? If not, is it true up to cobordism?
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6) It was recently shown by D. Silver and S. Williams (math.GT/
0409185) that multiplication of open strings is not commutative up to

homotopy. Is it commutative up to cobordism?

7) Compute the group 0 of cobordism classes of open strings.

8) Compute the group C(Z) of cobordism classes of graded based
matrices over Z.

9) Is there an invariant of virtual knots combining the skein in-

variant V with the Kontsevich universal finite type invariant of knots? This

might lead to mixed arrow-chord diagrams.

10) Study invariants of virtual strings that change in a controlled
way (say by constants) under the moves (a)s, (b)S, (c)s, cf. the theory of
Arnold’s invariants of plane curves.

11) Generalize the invariants of virtual knots introduced in this paper
to virtual links.
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