Holomorphic submersions from Stein manifolds
Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1913-1942.

We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

Nous établissons la classification homotopique des submersions holomorphes d'une variété de Stein sur une variété complexe satisfaisant une proprieté analytique introduite dans l'article. Le résultat est analogue au théorème de Gromov-Phillips sur les submersions lisses.

DOI: 10.5802/aif.2071
Classification: 32E10,  32E30,  32H02
Keywords: Stein manifolds, holomorphic submersions, Oka principle
@article{AIF_2004__54_6_1913_0,
     author = {Forstneri\v{c}, Franc},
     title = {Holomorphic submersions from {Stein} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1913--1942},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2071},
     mrnumber = {2134229},
     zbl = {1093.32003},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2071/}
}
TY  - JOUR
TI  - Holomorphic submersions from Stein manifolds
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 1913
EP  - 1942
VL  - 54
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2071/
UR  - https://www.ams.org/mathscinet-getitem?mr=2134229
UR  - https://zbmath.org/?q=an%3A1093.32003
UR  - https://doi.org/10.5802/aif.2071
DO  - 10.5802/aif.2071
LA  - en
ID  - AIF_2004__54_6_1913_0
ER  - 
%0 Journal Article
%T Holomorphic submersions from Stein manifolds
%J Annales de l'Institut Fourier
%D 2004
%P 1913-1942
%V 54
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2071
%R 10.5802/aif.2071
%G en
%F AIF_2004__54_6_1913_0
Forstnerič, Franc. Holomorphic submersions from Stein manifolds. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1913-1942. doi : 10.5802/aif.2071. https://aif.centre-mersenne.org/articles/10.5802/aif.2071/

[A] R. Abraham Transversality in manifolds of mappings., Bull. Amer. Math. Soc., Tome 69 (1963), pp. 470-474 | MR: 149495 | Zbl: 0171.44501

[B] W. Barth; C. Peters; A. Van De Ven Compact Complex Surfaces, Springer, Berlin--Heidelberg--New Zork--Tokyo, 1984 | MR: 749574 | Zbl: 0718.14023

[De] J.-P Demailly Cohomology of q-convex spaces in top degrees, Math. Z., Tome 204 (1990), pp. 283-295 | MR: 1055992 | Zbl: 0682.32017

[DG] F. Docquier; H. Grauert Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. (German), Math. Ann., Tome 140 (1960), pp. 94-123 | MR: 148939 | Zbl: 0095.28004

[E] Y. Eliashberg Topological characterization of Stein manifolds of dimension >2, Internat. J. Math, Tome 1 (1990), pp. 29-46 | MR: 1044658 | Zbl: 0699.58002

[EM] Y. Eliashberg; N. Mishachev Introduction to the h-principle, Graduate Studies in Math, Tome 48, Amer. Math. Soc., Providence, RI, 2002 | MR: 1909245 | Zbl: 1008.58001

[F3] F. Forstnerič The Oka principle for sections of subelliptic submersions, Math. Z., Tome 241 (2002), pp. 527-551 | MR: 1938703 | Zbl: 1023.32008

[F1] F. Forstnerič Noncritical holomorphic functions on Stein manifolds, Acta Math., Tome 191 (2003), pp. 143-189 | MR: 2051397 | Zbl: 1064.32021

[F2] F. Forstnerič; J. Bland, K.-T. Kim and S. G. Krantz eds. The homotopy principle in complex analysis: A survey, Explorations in Complex and Riemannian Geometry: A Volume dedicated to Robert E. Greene (Contemporary Mathematics) Tome 332 (2003), pp. 73-99 | Zbl: 1048.32004

[F4] F. Forstnerič Runge approximation on convex sets implies the Oka property (February 2004) (e-print, arXiv: math.CV/0402278)

[FK] F. Forstnerič; J. Kozak Strongly pseudoconvex handlebodies., J. Korean Math. Soc., Tome 40 (2003), pp. 727-746 | MR: 1995074 | Zbl: 1044.32025

[FLØ] F. Forstnerič; E. Løw; N. Øvrelid Solving the d- and ¯-equations in thin tubes and applications to mappings., Michigan Math. J., Tome 49 (2001), pp. 369-416 | MR: 1852309 | Zbl: 1016.32018

[Fo] O. Forster Plongements des variétés de Stein, Comment. Math. Helv, Tome 45 (1970), pp. 170-184 | MR: 269880 | Zbl: 0184.31403

[FP1] F. Forstnerič; J. Prezelj Oka's principle for holomorphic fiber bundles with sprays., Math. Ann., Tome 317 (2000), pp. 117-154 | MR: 1760671 | Zbl: 0964.32017

[FP3] F. Forstnerič; J. Prezelj Extending holomorphic sections from complex subvarieties., Math. Z., Tome 236 (2001), pp. 43-68 | MR: 1812449 | Zbl: 0968.32005

[FP2] F. Forstnerič; J. Prezelj Oka's principle for holomorphic submersions with sprays., Math. Ann., Tome 322 (2002), pp. 633-666 | MR: 1905108 | Zbl: 1011.32006

[FR] F. Forstnerič; J.-P. Rosay Approximation of biholomorphic mappings by automorphisms of n ., Invent. Math., Tome 112 (1993), pp. 323-349 | MR: 1213106 | Zbl: 0792.32011

[FR] F. Forstnerič; J.-P. Rosay Approximation of biholomorphic mappings by automorphisms of n , Invent. Math. (Erratum), Tome 118 (1994), p. 573-574 | MR: 1296357 | Zbl: 0808.32017

[G1] H. Grauert Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen., Math. Ann., Tome 133 (1957), pp. 139-159 | MR: 98197 | Zbl: 0080.29201

[G2] H. Grauert Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen., Math. Ann., Tome 133 (1957), pp. 450-472 | MR: 98198 | Zbl: 0080.29202

[G3] H. Grauert Analytische Faserungen über holomorph-vollständigen Räumen., Math. Ann., Tome 135 (1958), pp. 263-273 | MR: 98199 | Zbl: 0081.07401

[GN] R. C. Gunning; R. Narasimhan Immersion of open Riemann surfaces., Math. Ann., Tome 174 (1967), pp. 103-108 | MR: 223560 | Zbl: 0179.11402

[GR] R. C. Gunning; H. Rossi Analytic functions of several complex variables., Prentice--Hall, Englewood Cliffs, 1965 | MR: 180696 | Zbl: 0141.08601

[Gr1] M. Gromov Stable maps of foliations into manifolds., Izv. Akad. Nauk, S.S.S.R, Tome 33 (1969), pp. 707-734 | MR: 263103 | Zbl: 0197.20404

[Gr2] M. Gromov Convex integration of differential relations, I, Izv. Akad. Nauk SSSR Ser. Mat (Russian), Tome 37 (1973), pp. 329-343 | MR: 413206 | Zbl: 0254.58001

[Gr2] M. Gromov Convex integration of differential relations, I, Math. USSR--Izv. (English translation), Tome 7 (1973), pp. 329-343 | MR: 413206 | Zbl: 0281.58004

[Gr3] M. Gromov Partial Differential Relations., Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Tome 9, Springer, Berlin--New York, 1986 | MR: 864505 | Zbl: 0651.53001

[Gr4] M. Gromov Oka's principle for holomorphic sections of elliptic bundles., J. Amer. Math. Soc., Tome 2 (1989), pp. 851-897 | MR: 1001851 | Zbl: 0686.32012

[HL1] G. M. Henkin; J. Leiterer Andreotti-Grauert Theory by Integral Formulas., Progress in Math., Tome 74, Birkhäuser, Boston, 1988 | MR: 986248 | Zbl: 0654.32002

[HL2] G. M. Henkin; J. Leiterer The Oka-Grauert principle without induction over the basis dimension., Math. Ann., Tome 311 (1998), pp. 71-93 | MR: 1624267 | Zbl: 0955.32019

[HW] L. Hörmander; J. Wermer Uniform approximations on compact sets in n ., Math. Scand, Tome 23 (1968), pp. 5-21 | MR: 254275 | Zbl: 0181.36201

[Hö1] L. Hörmander L 2 estimates and existence theorems for the ¯ operator., Acta Math., Tome 113 (1965), pp. 89-152 | MR: 179443 | Zbl: 0158.11002

[Hö2] L. Hörmander An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1990 | MR: 1045639 | Zbl: 0685.32001

[O] K. Oka Sur les fonctions des plusieurs variables. III: Deuxième problème de Cousin., J. Sc. Hiroshima Univ., Tome 9 (1939), pp. 7-19 | JFM: 65.0361.01 | Zbl: 0020.24002

[P] A. Phillips Submersions of open manifolds., Topology, Tome 6 (1967), pp. 170-206 | MR: 208611 | Zbl: 0204.23701

[Ro] J.-P. Rosay A counterexample related to Hartog's phenomenon (a question by E.\ Chirka)., Michigan Math. J., Tome 45 (1998), pp. 529-535 | MR: 1653267 | Zbl: 0960.32020

[RS] R. M. Range; Y. T. Siu k approximation by holomorphic functions and ¯ -closed forms on k submanifolds of a complex manifold., Math. Ann., Tome 210 (1974), pp. 105-122 | MR: 350068 | Zbl: 0275.32008

[S] J.-T. Siu Every Stein subvariety admits a Stein neighborhood., Invent. Math., Tome 38 (1976), pp. 89-100 | MR: 435447 | Zbl: 0343.32014

[W] J. Winkelman The Oka-principle for mappings between Riemann surfaces., Enseign. Math. (2), Tome 39 (1993), pp. 143-151 | MR: 1225261 | Zbl: 0783.30031

Cited by Sources: