Cofinal types of topological directed orders
Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1877-1911.

We investigate the structure of the Tukey ordering among directed orders arising naturally in topology and measure theory.

On étudie la structure de l'ordre de Tukey sur les ensembles ordonnés filtrants qui apparaissent naturellement en topologie et en théorie de la mesure.

DOI: 10.5802/aif.2070
Classification: 03E05,  06A07,  03E15,  03E17,  22A26
Keywords: Tukey order, analytic ideals, σ-ideals of compact sets
@article{AIF_2004__54_6_1877_0,
     author = {Solecki, S{\L}awomir and Todorcevic, Stevo},
     title = {Cofinal types of topological directed orders},
     journal = {Annales de l'Institut Fourier},
     pages = {1877--1911},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2070},
     mrnumber = {2134228},
     zbl = {1071.03034},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2070/}
}
TY  - JOUR
TI  - Cofinal types of topological directed orders
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 1877
EP  - 1911
VL  - 54
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2070/
UR  - https://www.ams.org/mathscinet-getitem?mr=2134228
UR  - https://zbmath.org/?q=an%3A1071.03034
UR  - https://doi.org/10.5802/aif.2070
DO  - 10.5802/aif.2070
LA  - en
ID  - AIF_2004__54_6_1877_0
ER  - 
%0 Journal Article
%T Cofinal types of topological directed orders
%J Annales de l'Institut Fourier
%D 2004
%P 1877-1911
%V 54
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2070
%R 10.5802/aif.2070
%G en
%F AIF_2004__54_6_1877_0
Solecki, SŁawomir; Todorcevic, Stevo. Cofinal types of topological directed orders. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1877-1911. doi : 10.5802/aif.2070. https://aif.centre-mersenne.org/articles/10.5802/aif.2070/

[1] J.P.R. Christensen Topology and Borel Structure, North-Holland/Elsevier, 1974 | MR: 348724 | Zbl: 0273.28001

[2] I. Farah Analytic Quotients, Mem. Amer. Math. Soc, Tome 148 (2000) no. 702 | MR: 1711328 | Zbl: 0966.03045

[3] D.H. Fremlin The partially ordered sets of measure theory and Tukey's ordering, Note di Matematica, Tome 11 (1991), pp. 177-214 | MR: 1258546 | Zbl: 0799.06004

[4] D.H. Fremlin Families of compact sets and Tukey ordering, Atti. Sem. Mat. Fiz, Tome 39 (1991), pp. 29-50 | MR: 1111757 | Zbl: 0772.54030

[5] J.R. Isbell Seven cofinal types, J. London Math. Soc, Tome 4 (1972), pp. 651-654 | MR: 294185 | Zbl: 0238.06001

[6] A.S. Kechris Classical Descriptive Set Theory, Springer, 1995 | MR: 1321597 | Zbl: 0819.04002

[7] A.S. Kechris; A. Louveau; W.H. Woodin The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc, Tome 301 (1987), pp. 263-288 | MR: 879573 | Zbl: 0633.03043

[8] A. Louveau; B. Veli{#x010D;}kovi{#x0107;} Analytic ideals and cofinal types, Ann. Pure Appl. Logic, Tome 99 (1999), pp. 171-195 | MR: 1708151 | Zbl: 0934.03061

[9] S. Solecki Analytic ideals and their applications, Ann. Pure Appl. Logic, Tome 99 (1999), pp. 51-72 | MR: 1708146 | Zbl: 0932.03060

[10] S. Todorcevic Directed sets and cofinal types, Trans. Amer. Math. Soc, Tome 290 (1985), pp. 711-723 | MR: 792822 | Zbl: 0592.03037

[11] S. Todorcevic A classification of transitive relations on 1 , Proc. London Math. Soc., Tome 73 (1996), pp. 501-533 | MR: 1407459 | Zbl: 0870.04001

[12] S. Todorcevic Analytic gaps, Fund. Math, Tome 150 (1996), pp. 55-66 | EuDML: 212163 | MR: 1387957 | Zbl: 0851.04002

[13] S. Todorcevic Definable ideals and gaps in their quotients, Set Theory (Curacao 1995, Barcelona, 1990) (1998), pp. 213-226 | MR: 1602013 | Zbl: 0894.03026

[14] J.W. Tukey Convergence and uniformity in topology, Ann. Math. Studies, Tome 1, Princeton U.P, 1940 | JFM: 66.0961.01 | MR: 2515 | Zbl: 0025.09102

[15] S. Zafrany On analytic filters and prefilters, J. Symb. Logic, Tome 55 (1990), pp. 315-322 | MR: 1043560 | Zbl: 0705.03027

Cited by Sources: