We investigate the structure of the Tukey ordering among directed orders arising naturally in topology and measure theory.
On étudie la structure de l'ordre de Tukey sur les ensembles ordonnés filtrants qui apparaissent naturellement en topologie et en théorie de la mesure.
Classification: 03E05, 06A07, 03E15, 03E17, 22A26
Keywords: Tukey order, analytic ideals, -ideals of compact sets
@article{AIF_2004__54_6_1877_0, author = {Solecki, S{\L}awomir and Todorcevic, Stevo}, title = {Cofinal types of topological directed orders}, journal = {Annales de l'Institut Fourier}, pages = {1877--1911}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2070}, mrnumber = {2134228}, zbl = {1071.03034}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2070/} }
TY - JOUR TI - Cofinal types of topological directed orders JO - Annales de l'Institut Fourier PY - 2004 DA - 2004/// SP - 1877 EP - 1911 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2070/ UR - https://www.ams.org/mathscinet-getitem?mr=2134228 UR - https://zbmath.org/?q=an%3A1071.03034 UR - https://doi.org/10.5802/aif.2070 DO - 10.5802/aif.2070 LA - en ID - AIF_2004__54_6_1877_0 ER -
Solecki, SŁawomir; Todorcevic, Stevo. Cofinal types of topological directed orders. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1877-1911. doi : 10.5802/aif.2070. https://aif.centre-mersenne.org/articles/10.5802/aif.2070/
[1] Topology and Borel Structure, North-Holland/Elsevier, 1974 | MR: 348724 | Zbl: 0273.28001
[2] Analytic Quotients, Mem. Amer. Math. Soc, Tome 148 (2000) no. 702 | MR: 1711328 | Zbl: 0966.03045
[3] The partially ordered sets of measure theory and Tukey's ordering, Note di Matematica, Tome 11 (1991), pp. 177-214 | MR: 1258546 | Zbl: 0799.06004
[4] Families of compact sets and Tukey ordering, Atti. Sem. Mat. Fiz, Tome 39 (1991), pp. 29-50 | MR: 1111757 | Zbl: 0772.54030
[5] Seven cofinal types, J. London Math. Soc, Tome 4 (1972), pp. 651-654 | MR: 294185 | Zbl: 0238.06001
[6] Classical Descriptive Set Theory, Springer, 1995 | MR: 1321597 | Zbl: 0819.04002
[7] The structure of -ideals of compact sets, Trans. Amer. Math. Soc, Tome 301 (1987), pp. 263-288 | MR: 879573 | Zbl: 0633.03043
[8] Analytic ideals and cofinal types, Ann. Pure Appl. Logic, Tome 99 (1999), pp. 171-195 | MR: 1708151 | Zbl: 0934.03061
[9] Analytic ideals and their applications, Ann. Pure Appl. Logic, Tome 99 (1999), pp. 51-72 | MR: 1708146 | Zbl: 0932.03060
[10] Directed sets and cofinal types, Trans. Amer. Math. Soc, Tome 290 (1985), pp. 711-723 | MR: 792822 | Zbl: 0592.03037
[11] A classification of transitive relations on , Proc. London Math. Soc., Tome 73 (1996), pp. 501-533 | MR: 1407459 | Zbl: 0870.04001
[12] Analytic gaps, Fund. Math, Tome 150 (1996), pp. 55-66 | EuDML: 212163 | MR: 1387957 | Zbl: 0851.04002
[13] Definable ideals and gaps in their quotients, Set Theory (Curacao 1995, Barcelona, 1990) (1998), pp. 213-226 | MR: 1602013 | Zbl: 0894.03026
[14] Convergence and uniformity in topology, Ann. Math. Studies, Tome 1, Princeton U.P, 1940 | JFM: 66.0961.01 | MR: 2515 | Zbl: 0025.09102
[15] On analytic filters and prefilters, J. Symb. Logic, Tome 55 (1990), pp. 315-322 | MR: 1043560 | Zbl: 0705.03027
Cited by Sources: