[Types cofinaux d'espaces topologiques ordonnés filtrants]
On étudie la structure de l'ordre de Tukey sur les ensembles ordonnés filtrants qui apparaissent naturellement en topologie et en théorie de la mesure.
We investigate the structure of the Tukey ordering among directed orders arising naturally in topology and measure theory.
Keywords: Tukey order, analytic ideals, $\sigma $-ideals of compact sets
Mot clés : Ordre de Tukey, idéaux analytiques, $\sigma $-ideaux d’ensembles compacts
Solecki, SŁawomir 1 ; Todorcevic, Stevo 
@article{AIF_2004__54_6_1877_0, author = {Solecki, S{\L}awomir and Todorcevic, Stevo}, title = {Cofinal types of topological directed orders}, journal = {Annales de l'Institut Fourier}, pages = {1877--1911}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2070}, zbl = {1071.03034}, mrnumber = {2134228}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2070/} }
TY - JOUR AU - Solecki, SŁawomir AU - Todorcevic, Stevo TI - Cofinal types of topological directed orders JO - Annales de l'Institut Fourier PY - 2004 SP - 1877 EP - 1911 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2070/ DO - 10.5802/aif.2070 LA - en ID - AIF_2004__54_6_1877_0 ER -
%0 Journal Article %A Solecki, SŁawomir %A Todorcevic, Stevo %T Cofinal types of topological directed orders %J Annales de l'Institut Fourier %D 2004 %P 1877-1911 %V 54 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2070/ %R 10.5802/aif.2070 %G en %F AIF_2004__54_6_1877_0
Solecki, SŁawomir; Todorcevic, Stevo. Cofinal types of topological directed orders. Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1877-1911. doi : 10.5802/aif.2070. https://aif.centre-mersenne.org/articles/10.5802/aif.2070/
[1] Topology and Borel Structure, North-Holland/Elsevier, 1974 | MR | Zbl
[2] Analytic Quotients, Mem. Amer. Math. Soc, Volume 148 (2000) no. 702 | MR | Zbl
[3] The partially ordered sets of measure theory and Tukey's ordering, Note di Matematica, Volume 11 (1991), pp. 177-214 | MR | Zbl
[4] Families of compact sets and Tukey ordering, Atti. Sem. Mat. Fiz, Volume 39 (1991), pp. 29-50 | MR | Zbl
[5] Seven cofinal types, J. London Math. Soc, Volume 4 (1972), pp. 651-654 | MR | Zbl
[6] Classical Descriptive Set Theory, Springer, 1995 | MR | Zbl
[7] The structure of -ideals of compact sets, Trans. Amer. Math. Soc, Volume 301 (1987), pp. 263-288 | MR | Zbl
[8] Analytic ideals and cofinal types, Ann. Pure Appl. Logic, Volume 99 (1999), pp. 171-195 | MR | Zbl
[9] Analytic ideals and their applications, Ann. Pure Appl. Logic, Volume 99 (1999), pp. 51-72 | MR | Zbl
[10] Directed sets and cofinal types, Trans. Amer. Math. Soc, Volume 290 (1985), pp. 711-723 | MR | Zbl
[11] A classification of transitive relations on , Proc. London Math. Soc., Volume 73 (1996), pp. 501-533 | MR | Zbl
[12] Analytic gaps, Fund. Math, Volume 150 (1996), pp. 55-66 | EuDML | MR | Zbl
[13] Definable ideals and gaps in their quotients, Set Theory (Curacao 1995, Barcelona, 1990) (1998), pp. 213-226 | MR | Zbl
[14] Convergence and uniformity in topology, Ann. Math. Studies, 1, Princeton U.P, 1940 | JFM | MR | Zbl
[15] On analytic filters and prefilters, J. Symb. Logic, Volume 55 (1990), pp. 315-322 | MR | Zbl
Cité par Sources :