Some consequences of perversity of vanishing cycles
Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1769-1792.

For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.

Pour une fonction holomorphe sur une variété lisse complexe, nous montrons que l'annulation de la cohomologie en bas degré en un point est déterminée par celle aux points voisins, via la perversité du complexe des cycles évanescents. Nous calculons explicitement cet ordre d'annulation lorsque les singularités voisines sont à croisements normaux. Nous en déduisons des résultats sur la taille des blocs de Jordan de la monodromie.

DOI: 10.5802/aif.2065
Classification: 14B05,  14D05,  14F17,  32S20,  32S25,  32S40,  32S55
Keywords: Milnor fibration, perverse sheaf, vanishing cycles
@article{AIF_2004__54_6_1769_0,
     author = {Dimca, Alexandru and Saito, Morihiko},
     title = {Some consequences of perversity of vanishing cycles},
     journal = {Annales de l'Institut Fourier},
     pages = {1769--1792},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2065},
     mrnumber = {2134223},
     zbl = {1070.14011},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2065/}
}
TY  - JOUR
TI  - Some consequences of perversity of vanishing cycles
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 1769
EP  - 1792
VL  - 54
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2065/
UR  - https://www.ams.org/mathscinet-getitem?mr=2134223
UR  - https://zbmath.org/?q=an%3A1070.14011
UR  - https://doi.org/10.5802/aif.2065
DO  - 10.5802/aif.2065
LA  - en
ID  - AIF_2004__54_6_1769_0
ER  - 
%0 Journal Article
%T Some consequences of perversity of vanishing cycles
%J Annales de l'Institut Fourier
%D 2004
%P 1769-1792
%V 54
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2065
%R 10.5802/aif.2065
%G en
%F AIF_2004__54_6_1769_0
Dimca, Alexandru; Saito, Morihiko. Some consequences of perversity of vanishing cycles. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1769-1792. doi : 10.5802/aif.2065. https://aif.centre-mersenne.org/articles/10.5802/aif.2065/

[1] D. Barlet Interaction de strates consécutives pour les cycles évanescents, Ann. Sci. École Norm. Sup. (4), Tome 24 (1991), pp. 401-505 | Numdam | MR: 1123558 | Zbl: 0772.32024

[2] A. Beilinson; J. Bernstein; P. Deligne Faisceaux pervers, Astérisque, Tome 100, Soc. Math. France, Paris, 1982 | MR: 751966 | Zbl: 0536.14011

[3] J.L. Brylinski Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales (Astérisque) Tome 140-141 (1986), pp. 3-134 | Zbl: 0624.32009

[4] N. Budur; M. Saito Multiplier ideals, V-filtration, and spectrum (e-print, math.AG/0305118) | Zbl: 1086.14013

[5] D. Cohen; A. Suciu On Milnor fibrations of arrangements, J. London Math. Soc., Tome 51 (1995), pp. 105-119 | MR: 1310725 | Zbl: 0814.32007

[6] P. Deligne Théorie de Hodge I, Actes Congrès Intern. Math., Tome 1 (1970), pp. 425-430 | MR: 441965 | Zbl: 0219.14006

[6] P. Deligne Théorie de Hodge II, Publ. Math. IHES, Tome 40 (1971), pp. 5-57 | Numdam | MR: 498551 | Zbl: 0219.14007

[6] P. Deligne Théorie de Hodge III (ibid), Publ. Math. IHES, Tome 44 (1974), pp. 5-77 | Numdam | MR: 498552 | Zbl: 0237.14003

[7] P. Deligne Le formalisme des cycles évanescents, SGA7 (Lect. Notes in Math. 340) Tome Exposé XIII (1973), pp. 82-115 | Zbl: 0266.14008

[7] P. Deligne Le formalisme des cycles évanescents, SGA7 (Lect. Notes in Math. 340) Tome Exposé XIV (1973), pp. 116-164 | Zbl: 0266.14008

[8] A. Dimca Sheaves in Topology, Universitext, Springer, Berlin, 2004 | MR: 2050072 | Zbl: 1043.14003

[9] A. Dimca; A. Libgober Local topology of reducible divisors (e-print, math.AG/0303215)

[10] A. Dimca; M. Saito Monodromy at infinity and the weights of cohomology, Compos. Math., Tome 138 (2003), pp. 55-71 | MR: 2002954 | Zbl: 1039.32037

[11] W. Fulton Intersection theory, Springer, Berlin, 1984 | MR: 732620 | Zbl: 0541.14005

[12] M. Kashiwara Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) (Lect. Notes in Math.) Tome 1016 (1983), pp. 134-142 | Zbl: 0566.32022

[13] B. Malgrange Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II-III (Luminy, 1981) (Astérisque) Tome 101-102 (1983), pp. 243-267 | Zbl: 0528.32007

[14] V. Navarro Aznar Sur la théorie de Hodge-Deligne, Inv. Math., Tome 90 (1987), pp. 11-76 | MR: 906579 | Zbl: 0639.14002

[15] P. Orlik; R. Randell The Milnor fiber of a generic arrangement, Ark. Mat., Tome 31 (1993), pp. 71-81 | MR: 1230266 | Zbl: 0807.32029

[16] M. Saito Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., Tome 24 (1988), pp. 849-995 | MR: 1000123 | Zbl: 0691.14007

[17] M. Saito Mixed Hodge Modules, Publ. RIMS, Kyoto Univ., Tome 26 (1990), pp. 221-333 | MR: 1047415 | Zbl: 0727.14004

[18] D. Siersma Variation mappings on singularities with a 1-dimensional critical locus, Topology, Tome 30 (1991), pp. 445-469 | MR: 1113689 | Zbl: 0746.32014

[19] D. Siersma; D. Siersma et al., eds. The vanishing topology of non isolated singularities, New Developments in Singularity Theory (2001), pp. 447-472 | Zbl: 1011.32021

[20] J.H.M. Steenbrink; Alphen and Rijn Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) (1977), pp. 525-563 | Zbl: 0373.14007

Cited by Sources: