For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.
Pour une fonction holomorphe sur une variété lisse complexe, nous montrons que l'annulation de la cohomologie en bas degré en un point est déterminée par celle aux points voisins, via la perversité du complexe des cycles évanescents. Nous calculons explicitement cet ordre d'annulation lorsque les singularités voisines sont à croisements normaux. Nous en déduisons des résultats sur la taille des blocs de Jordan de la monodromie.
Classification: 14B05, 14D05, 14F17, 32S20, 32S25, 32S40, 32S55
Keywords: Milnor fibration, perverse sheaf, vanishing cycles
@article{AIF_2004__54_6_1769_0, author = {Dimca, Alexandru and Saito, Morihiko}, title = {Some consequences of perversity of vanishing cycles}, journal = {Annales de l'Institut Fourier}, pages = {1769--1792}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2065}, mrnumber = {2134223}, zbl = {1070.14011}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2065/} }
TY - JOUR TI - Some consequences of perversity of vanishing cycles JO - Annales de l'Institut Fourier PY - 2004 DA - 2004/// SP - 1769 EP - 1792 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2065/ UR - https://www.ams.org/mathscinet-getitem?mr=2134223 UR - https://zbmath.org/?q=an%3A1070.14011 UR - https://doi.org/10.5802/aif.2065 DO - 10.5802/aif.2065 LA - en ID - AIF_2004__54_6_1769_0 ER -
Dimca, Alexandru; Saito, Morihiko. Some consequences of perversity of vanishing cycles. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1769-1792. doi : 10.5802/aif.2065. https://aif.centre-mersenne.org/articles/10.5802/aif.2065/
[1] Interaction de strates consécutives pour les cycles évanescents, Ann. Sci. École Norm. Sup. (4), Tome 24 (1991), pp. 401-505 | Numdam | MR: 1123558 | Zbl: 0772.32024
[2] Faisceaux pervers, Astérisque, Tome 100, Soc. Math. France, Paris, 1982 | MR: 751966 | Zbl: 0536.14011
[3] Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales (Astérisque) Tome 140-141 (1986), pp. 3-134 | Zbl: 0624.32009
[4] Multiplier ideals, -filtration, and spectrum (e-print, math.AG/0305118) | Zbl: 1086.14013
[5] On Milnor fibrations of arrangements, J. London Math. Soc., Tome 51 (1995), pp. 105-119 | MR: 1310725 | Zbl: 0814.32007
[6] Théorie de Hodge I, Actes Congrès Intern. Math., Tome 1 (1970), pp. 425-430 | MR: 441965 | Zbl: 0219.14006
[6] Théorie de Hodge II, Publ. Math. IHES, Tome 40 (1971), pp. 5-57 | Numdam | MR: 498551 | Zbl: 0219.14007
[6] Théorie de Hodge III (ibid), Publ. Math. IHES, Tome 44 (1974), pp. 5-77 | Numdam | MR: 498552 | Zbl: 0237.14003
[7] Le formalisme des cycles évanescents, SGA7 (Lect. Notes in Math. 340) Tome Exposé XIII (1973), pp. 82-115 | Zbl: 0266.14008
[7] Le formalisme des cycles évanescents, SGA7 (Lect. Notes in Math. 340) Tome Exposé XIV (1973), pp. 116-164 | Zbl: 0266.14008
[8] Sheaves in Topology, Universitext, Springer, Berlin, 2004 | MR: 2050072 | Zbl: 1043.14003
[9] Local topology of reducible divisors (e-print, math.AG/0303215)
[10] Monodromy at infinity and the weights of cohomology, Compos. Math., Tome 138 (2003), pp. 55-71 | MR: 2002954 | Zbl: 1039.32037
[11] Intersection theory, Springer, Berlin, 1984 | MR: 732620 | Zbl: 0541.14005
[12] Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) (Lect. Notes in Math.) Tome 1016 (1983), pp. 134-142 | Zbl: 0566.32022
[13] Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II-III (Luminy, 1981) (Astérisque) Tome 101-102 (1983), pp. 243-267 | Zbl: 0528.32007
[14] Sur la théorie de Hodge-Deligne, Inv. Math., Tome 90 (1987), pp. 11-76 | MR: 906579 | Zbl: 0639.14002
[15] The Milnor fiber of a generic arrangement, Ark. Mat., Tome 31 (1993), pp. 71-81 | MR: 1230266 | Zbl: 0807.32029
[16] Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., Tome 24 (1988), pp. 849-995 | MR: 1000123 | Zbl: 0691.14007
[17] Mixed Hodge Modules, Publ. RIMS, Kyoto Univ., Tome 26 (1990), pp. 221-333 | MR: 1047415 | Zbl: 0727.14004
[18] Variation mappings on singularities with a 1-dimensional critical locus, Topology, Tome 30 (1991), pp. 445-469 | MR: 1113689 | Zbl: 0746.32014
[19] The vanishing topology of non isolated singularities, New Developments in Singularity Theory (2001), pp. 447-472 | Zbl: 1011.32021
[20] Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) (1977), pp. 525-563 | Zbl: 0373.14007
Cited by Sources: