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1769-

SOME CONSEQUENCES OF PERVERSITY
OF VANISHING CYCLES

by Alexandru DIMCA and Morihiko SAITO

Introduction.

Let f be a nonconstant holomorphic function on a complex analytic
space X. For each x E Y = f - 1 (0), we have the vanishing cohomology
H-7 (Fx, Q) where Fx denotes the (typical) fiber of the Milnor fibration

around x, and H means the reduced cohomology. It has been observed

by many people that there are certain relations between the Hj (Fx, Q)
for x C Y. It is well-known that they form a constructible sheaf on Y

(called the vanishing cohomology sheaf). P. Deligne [7] constructed a sheaf
complex on Y (called the vanishing cycle complex) such that its

cohomology sheaves are the vanishing cohomology sheaves.

Let Lx denote the intersection of Y with a sufficiently small sphere
around x E Y (in a smooth ambient space), which is called the link of (x)
in Y. Let T~, Ts be respectively the unipotent and semisimple part of the
monodromy T, and put N = log Tu. Let (Fx, Q) 1 and fIn-1 (Fx, 
denote the unipotent and non unipotent monodromy part, which are defined
by Ker (Ts -1) and ®~~1 Ker (Ts - A) (after a scalar extension) respectively,
and similarly for the cohomology with compact supports.

THEOREM 0.1. - Assume that Qx [n + 1] is a perverse sheaf (e.g. X is
a locally complete intersection of dimension n + 1), and n &#x3E; 1. Then there

are canonical isomorphisms

Keyi.vords: Milnor filtration -Perverse sheaf -Vanishing cycles.
Math. classification: 14B05 - 14D05 - 14F17 - 32S20 - 32S25 - 32S40 - 32S55.
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and a short exact sequence

Here Kx is the kernel of a morphism which is the direct sum of

where (-1) denotes the Tate twist, and coincides with the natural

morphism (i.e. corresponds to the natural intersection form ifX is a rational
homology manifold). If X is a rational homology manifold at x, then 
coincides with the natural morphism. These morphisms and the short exact
sequence are compatible with mixed Hodge structure.

In the 1-dimensional singular locus case, a similar assertion was

obtained in [18], [19], see also [1]. Theorem 0.1 means that 
for j  n - 1 (resp. j - n - 1) is completely (resp. partially) determined
by the restriction of to the complement of x, and only fIn (Fx, Q) is
essentially interesting if we know well about the restriction of pjox to
the complement of x. The proof easily follows from the well-known fact
that the vanishing cycle complex pjox is a (shifted) perverse sheaf.

Actually, the first two assertions of Theorem 0.1 are essentially equivalent
to the perversity of CPfQx, assuming the perversity of its restriction to
the complement of x. The hypercohomology can be

calculated by using spectral sequences 2.2-2.3. The mixed Hodge structure
on Hj (Fx, Q) can be calculated by using the weight spectral sequence 1.5,
see also [14] for the unipotent monodromy case, and [20] for the isolated
singularity case.

In Theorem 0.1 we can replace the vanishing cycle complex 
with the nearby cycle complex of YFQx in [7], and with fl, : HNC (Fx, Q) -

Q). In this case is a natural morphism, and in the isolated
singularity case (where X is smooth), we get a well-known relation between
the cohomology of the Milnor fiber and the link. Note that the morphism ~3~
in Theorem 0.1 for p in the isolated singularity case is an isomorphism (i.e.
the morphism corresponds to a nondegenerate pairing if X is a rational
homology manifold), because vanishes, see also 1.3 below.

Let denote the rank of Ker (Ts - A)) for A E C.
Using Theorem 0.1, we can explicitly calculate it for j  n - 2 in the case

of a divisor with simple normal crossings outside a point as follows (see 4.3
for the proof).
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THEOREM 0.2. - With the notation and the assumption of 0.1,
assume X B ~x~ is smooth, Y B ~x~ is a divisor urith normal crossings
on and the local irreducible components Yi (i = 1, ... m) Of Yred
at x are principal divisors having at most isolated singularities at x. Let ai be
the multiplicity of Y at the generic point of Yi, and d = GCD ( aI, ... , 
Assume j  ~20132+J~i, where ÓÀ,1 = 1 if A = 1, and 0 otherwise.
Then is a pure Hodge structure of type ( j , j ) ; in particular, the
monodromy is semisimple. Furthermore, if ~d ~ 1, we have b3A (Fx) = 0,
and if 1, then

1"

Here the equality holds also for j
rational llomology manifold for any subset I of ~ 1
where Yo = X.

The case a2 = 1 for any i was studied in [9], see also 4.4 below.
In the case where an embedded resolution of (X, Y) can be obtained by
one blow-up with a point center (e.g. an equisingular deformation of the
affine cone of a divisor with simple normal crossings on a smooth projective
variety), we have a more precise statement as follows (see 4.5 for the proof).

THEOREM 0.3. - With the notation and assumptions of 0.1, let

7r: X ---t X be the blow-up of X with center x, and assume that X and

the exceptional divisor E :== ~r-1 (x) are smooth and the total transform
Y := 7r-I(y) is a divisor with normal crossings. Let Y’ be the proper
transform of Y, and put U = E B Y’. Let e be the multiplicity of Y
along U. Then the monodromy T on Hj(Fx,Q) is semisimple for any j,
and is of type (~’,~) for j  n. Furthermore, if A’ ~4 1, we
have b~(Fx) = 0 for any j, and if Àe == 1, then
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This gives a generalization of formulas in [5], [15] for a generic
central arrangement with ai - 1, see 4.6 below. If X is smooth (i.e.
if (X,x) - (cn+l, 0)), then the assumption of 0.3 is equivalent to that
the union of the divisors defined by the lowest degree part of a defining
equation fj of Yj is a reduced divisor with normal crossings on P~, and we
have e - Ej ajdj where dj is the degree of the lowest degree part of fj ; in
particular, d divides e. We can calculate x(U) explicitly in this case, see 4.6.

Let T denote the monodromy of with the Jordan decomposition
T = TuTs. For a complex number À, set p j, xc x = Ker(Ts - À) C 
(in the abelian category of shifted perverse sheaves), and N = log Tu. As an
application of Theorem 0.1, we show

THEOREM 0.4. - With the notation and the assumption of 0.1,
let j be a positive integer  n. Assume the monodromy of 
has a Jordan block of size k. Then the action of Nk-1 on 
is nonzero for any open neighborhood U of x. Furthermore, there exist

points yi (i- x) sufficiently near x for i  j such that the monodromy
has a Jordan block of size l~i and l~i &#x3E; k, where we

This is a refinement of Corollary 6.1.7 in [8]. There is an example such
that the monodromy at degree n-1 is not semisimple at x, but is semisimple
outside x, see Appendix. Note that the support of the image of N k

(resp. in as shifted perverse sheaves has dimension  n - k

(resp.  n - k - 1), see e.g. [10]. In the case dim supp pf, xc x = r, we
have 0 for j  n - r (see 2.1.2 below), and the conclusion of
Theorem 0.4 for j - n - r means that the monodromy of Hn-r(Fy, 
has a Jordan block of size m for any point y of a connected component
of Lx (considering the subsheaf of defined by
the image of Nk-l and using 3.5 below). In particular, we get

COROLLARY 0.5. - If r (e.g. if dim Sing f = r)
and the monodromy of ÎÍn-r (Fy , CC) a for one point y of each connected
component of Lx ~1 is semisimple, then so is that of

.

For the lowest degree part we have a more precise description of
see 3.5 below.
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In Section 1 we review the theory of nearby and vanishing cycles. In
Section 2 we calculate the cohomology of some sheaf complexes on the link
of a point. In Section 3 we prove Theorems 0.1 and 0.4. In Section 4 we treat
the case of simple normal crossings outside a point, and prove Theorems 0.2
and 0.3. In Appendix we give a nontrivial example for Theorem 0.4.

1. Vanishing cycles.

1.1. Nearby and vanishing cycles. - Let f be a nonconstant
holomorphic function on a connected complex analytic space X. Assume
Qx [n + 1] is a perverse sheaf in the sense of [2] (in particular, dim X = n + 1).
This is satisfied if X is a locally complete intersection, see e.g. [8],
Theorem 5.1.19. (Indeed, if X is defined locally by a regular sequence
gl , ... , gr on a smooth space Z, we can show the acyclicity (except for
one degree) of the algebraic local cohomology of C~Z along X by using
the inductive limit of the Koszul complex of g’1, ... , gm for m - 00, see
also 1.6 below.)

Let A be a field of characteristic 0 (e.g. A = Q or C). We denote by
the nearby and vanishing cycle complexes on Y : = f -1 ( o ) ,

see [7]. It is well known and are perverse sheaves.

(This follows, for example, from [12], [13], see also [3].) We have the action
of the semisimple part T, of the monodromy T on the shifted perverse
sheaves. For A E A, let

By definition of vanishing cycles, we for À = 1.

If A is algebraically closed, we have the decompositions

In general, we have

. 

denote the non unipotent monodromy part, and

For x E Y, we have isomorphisms
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Here Fx denotes the Milnor fiber as in the introduction, and is

the A-eigenspace as above. By [16], [17], we have a canonical mixed Hodge
structure on these groups (which coincides with the one in [20] for the

isolated singularity case), see also [14].

1.2. Cohomology with compact supports. - It is known that

there is a proper continuous map p : X, --+ Y such that 1/JfA == JRp*A, where
X~ = f -1 (c) for c # 0 sufficiently small. This can be constructed by using a
resolution of singularities. Let i : Y denote the inclusion morphism.
Then for a sufficiently small open ball Bx around x, we have a commutative
diagram

where the horizontal morphisms are canonical isomorphisms, the first two
vertical morphisms (3F, (3B are natural morphisms, and (3’ljJ is induced by
the natural morphism il - i*. By (1.2.1), (3F will be identified with 

1.3. Unipotent monodromy part. - We have morphisms of
perverse sheaves (compatible with mixed Hodge modules [16])

whose compositions coincide with N If n &#x3E; 1 and X is a

rational homology manifold at x, then they induce isomorphisms

because the mapping cone of Var is and 

Rr ,,I Ax.
By the isomorphisms of (1.3.1), the morphism

which is the restriction of 13F, can be identified with the composition of N
and

which is induced by the natural morphism il 2013~ i*. Indeed, using
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can o Var = N together with the commutativity of the natural morphism
il - i* with can, Var, we get a commutative diagram

where the vertical morphisms are isomorphisms. Note that the morphism
in (1.3.3) is an isomorphism in the isolated singularity case, because

supp pfA = (x) .
In Theorem 0.1, in (1.3.3) is identified with a morphism

by using the isomorphisms of ( 1. 2 .1 )
and ( 1. 3 .1 ) . For the non unipotent monodromy part, we have {3’lj;,:j:1 = 

1.4. Normal crossing case. - Assume that Y := /~(0) is a

divisor with normal crossings on a complex manifold X whose irreducible
components Yi , ... , Y m are smooth. Let

underlies a mixed Hodge Module, 0x has the weight
filtration W which is the monodromy filtration shifted by n = dim Y, i.e.

denote the N-primitive part, which is defined by
and is zero otherwise. By ( 1.4.1 ) we

have the primitive decomposition

Let aj be the multiplicity of f along 1j, and put ’-

with the inclusion

we see that the primitive part
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over I C J(A) with |I| = K + 1, where is a local system of rank 1 on UI.
Furthermore, the monodromy of J(A)) is given by the
multiplication by so that (1.4.4) holds.

If each Yj is a principal divisor defined by a reduced equation fin
and f = flj fJ aJ, then the 0x, 1 are the restrictions of on Uo which is
defined by Q9j f) L j where Lj is a local system on C* with monodromy A-’3
for j tt J(A). This can be verified by reducing to the case where the ai
are independent of i, and using the compatibility of the nearby cycle
functor with the direct image under a proper morphism. Indeed, setting
cj = LCM(ai , ... , we have a ramified covering of X defined by

For the vanishing cycle with A = 1, the weight filtration
is the monodromy filtration shifted by n -~- 1. For the N-primitive
part PGr w we have

because Cx [n] can be identified with Im 1

1.5. Weight spectral sequence. - Let 7r: (X’, Y’) - (X, Y) be an
embedded resolution such that Y’ := Jr-l (Y) and E :_ 1r-1 (x) are divisors
with simple normal crossings. Let E’ be the closure of Y’ B E, and put
U = E B E’ with the inclusion j’ : U - E. Let f’ - Then by [4], 4.2,
the canonical morphism

is a quasi-isomorphism. (This easily follows from [17], 3.3.) Since the nearby
cycle functor commutes with the direct image under a proper morphism,
we get canonical isomorphisms (compatible with T)

Let Yl , ... , Y?.,-L denote the irreducible components of Y’ (which are
assumed to be smooth). We may assume that Yi , ... , Yr are the irreducible
components of E = 7r - 1 (x). Let YI, be as in 1.4. For I ... , 

let s (I ) _ ~ I n {I, ... , r) - 1. Then we have the weight spectral sequence
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where the summation is taken over

Indeed, is a t-exact functor [2], and
comes from the graded pieces of the weight

- . , , ,-, , I I’" I ,... I - /

for I’ . :== Here we may assume essentially that FA,I is

a constant sheaf (where the assertion is well-known [6]) because it is of

normal crossing type, see [17], 3.1. The range of a comes from the symmetry
of the weight filtration (1.4.1) which is related to .7~~ because we consider
it on U.

The spectral sequence (1.5.3) degenerates at E2, because 
is pure of weight j + k.

Remark 1.6. - If Qx[n +1] is a perverse sheaf, then Qy[n] is a

perverse sheaf for any locally principal divisor Y on X. Indeed, we have
locally a distinguished triangle

by the definition of pj, where f is a local equation of Y. This implies
0 except for j = 0, l, where denotes the perverse

cohomology functor [2]. Furthermore, the vanishing of Px~ (Qy [n]) for j &#x3E; 0

is clear by the definition of semi-perversity. (In general, a sheaf complex .~’
is called semi-perverse if dim supp i for any i, see loc. cit. )

1.7. Wang sequence. - Let f be a holomorphic function on an
analytic space X. Let Lx,., be the link of x in X. Then we have the Wang
sequence

In the category of mixed Hodge structures, this follows from

where i’ : Y - X, j’ : X B Y --~ X are the inclusion morphisms, see e.g. [17],
2.23, for the second isomorphism. (Here Qx can be defined locally in
the derived category of mixed Hodge Modules, using an embedding into
a smooth space.)
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2. Cohomology of link with coefficients.

2.1. Localization sequence. - Let F be a perverse sheaf on Y in

the sense of [2]. In particular,

Let I : (x) - Y and j : U : = Y ) (x) - Y denote the inclusions. Let
Lx be the intersection of a sufficiently small sphere around x with Y. Then

and we get a long exact sequence

induced by the distinguished triangle

which is identified with ~ 1

Let D denote the functor assigning the dual. Since Di’ = z*D, and D0
is a perverse sheaf, we get

Indeed, (2.1.4) is equivalent to the (dual) semi perversity of .~ (see [2])
assuming the perversity of the restriction of ,~’ to the complement of x.

2.2. Leray spectral sequence. - Let F be a complex of sheaves
with constructible cohomology on Y. There is a Leray-type spectral
sequence

induced by the filtration T on ,~’, see [6]. By (2.1.3) this is compatible
with mixed Hodge structure (using a t-structure in [17], 4.6) if T underlies
a complex of mixed Hodge modules. The calculation of (2.2.1) is not

necessarily easy. One problem is that is a constructible sheaf and

not a local system, and some times we have to use the spectral sequence
associated to a stratification, which is a special case of (2.3.1) below, to
calculate its cohomology. Actually this spectral sequence can be formulated
for a complex as below, and we do not have to use spectral sequences twice
if we can calculate the El-term of (2.3.1). But the calculation of dr is still
nontrivial.
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2.3. Spectral sequence associated to a stratification. - Let F
be as above, and let be a stratification of Y compatible with 0, where
the Yk are locally closed analytic subspaces of Y with pure dimension k
such that the restriction of to Yk is a local system, and Yk B Yk is

the disjoint union of Yi (i  k). Put Uk = Then, for each k,
there is a subcomplex of ,~’ whose restriction to Uk coincides with Tj Uk and
whose restriction to vanishes (i.e. it is the direct image with proper
supports by Uk - Y). Such complexes form a decreasing filtration of .~’
whose graded pieces are (the direct images with proper supports of) the
restrictions to the Yk. So they induce the spectral sequence associated
to the stratification

By (2.1.3) this is also compatible with mixed Hodge structure (using the
quasi-filtration in [16], 5.2.17).

2.4. Weight spectral sequence. Let ,~’ be a perverse sheaf underlying a
mixed Hodge Module, and W be the weight filtration. Then, as in [6], W
induces a spectral sequence

which is called the (generalized) weight spectral sequence. (We can use
Verdier’s theory of spectral objects, see [2] and also [16], 5.2.18.) By (2.1.3)
this is compatible with mixed Hodge structure, but does not necessarily
degenerate at E2, because is not pure of weight j + k in general.
It is not easy to calculate this spectral sequence explicitly except for some
special cases, see e.g. 4.2 below.

If is smooth and Y) (z) is a divisor with simple normal
crossings, then the El-complex has a structure of double complex whose
differentials are induced by the Cech restriction morphism and the co-Cech
Gysin morphism, see e.g. [20]. Indeed, the differential dl is induced by the
extension class between the graded pieces of the perverse sheaves, and the
assertion can be verified by using locally a ramified covering as in (1.4.5)
and reducing to the case where the irreducible components of Y B ~x~ have
the constant multiplicity.

3. Proofs of Theorems 0.1 and 0.4.

3.1. Proof of Theorem 0.1. - Applying 2.1 to 0 = the

assertion follows from 1.1-1.3 and 2.1.
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3.2. Proof of Theorem 0.4. - The first assertion follows from 2.1

applied to Im N k-1 C (defined in the abelian category of shifted
perverse sheaves). Indeed, factorizing by

we see that Im 0 on a neighborhood of x. The remaining
assertion is clear by (2.2.1 ) . Indeed, if any Jordan block of the monodromy
on has size at most then N~2 = 0 on 
and by Theorem 0.1 together
with (2.2.1), because = 0 where G is the filtration

associated to the spectral sequence (2.2.1 ) .

3.3. One-dimensional singular locus case. - If ~~, :=

supppQf,Acx is 1-dimensional (e.g. if Sing f is 1-dimensional), let 

be the local irreducible components of £ x at x, and take xi E n Lx.
Then 0 for j  n - 1, and

where Ti denotes the monodruiny of the local system on n Lx (which is
called the vertical monodromy in [18], [19]). However, for a given element
of (Di (fl- (F~Z , C~)~ )T2 , it is not easy to determine whether it comes from

C) x or not. Note that Kx = Ker 0,, does not vanish in general.
For example, if X is smooth and Y is a reduced divisor with normal

crossings it is well-known (see e.g. [20]) that the Milnor fiber is homotopy
equivalent to a real torus of dimension m -1 where m is the multiplicity of Y
at the point. In the case f = xyz and n = 2, we have 1 = 2

and = 3, see also [18], [19].

3.4. Remark. - There are examples such that the monodromy
of is semisimple, but that of H-n-l(Fy,Q) for y sufficiently
near x has a Jordan block of size n (this implies that the converse of
Theorem 0.4 does not hold). For example, consider a germ of (n - 1 )-
dimensional hypersurface (Y, x) with isolated singularity whose Milnor
monodromy has a Jordan block of size n, take a projective compactification
Z of Y in pn such that Z B ~x~ is smooth (using finite determinacy of
isolated singularity), and then take f : defining equation
of Z.

3.5. Lowest degree term. Assume ~~ . - is

r-dimensional (e.g. Sing f is r-dimensional). Let El be an (r - 1)-
dimensional Zariski-locally closed smooth analytic subspace of £x such

A NlB.T A IRQ Tî1=’. T.&#x3E;TNrrTrrTirr FOURIER
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is smooth (where ~~ is the closure of ~l) and the

Indeed, restricting to a subspace transversal to E’, (3.5.1) follows from
the 1-dimensional singular locus case, and furthermore, the cokernel of the
inclusion in (3.5.1 ) is given by Kx in Theorem 0.1, see (3.3). Similarly (3.5.2)
follows from Theorem 0.1 by induction on strata.

4. Case of simple normal crossings outside a point

4.1. - With the notation of ( 1.1 ) , assume that X B is smooth, and
is a divisor with simple normal crossings on Here simple

means that each irreducible component of Y) (x) is smooth. Assume

further that the local irreducible components of Y at x are principal
divisors. Then, replacing X with a sufficiently small open neighborhood
of x if necessary, there exist holomorphic functions fz : X ~ C and positive
integers a2 for i = 1, ... , m such that f = ffl ... f m and each Yi : - (0)
has at most isolated singularity at x, see also [9]. Here we assume n &#x3E; 2.

Let

underlies a mixed Hodge Module, we have the

weight spectral sequence (2.4.1 ) . Here W is the monodromy filtration shifted
by n - and the N-primitive part is calculated

as in 1.4.

We assume that + 1] is a perverse sheaf. Since the intersection

complex of X is given by + 1] where ~:~B{:r} 2013~ ~
denotes the inclusion, this condition is equivalent to

where is the link of in X. This follows from the long exact

sequence of perverse sheaves associated to the distinguished triangle

because ’
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PROPOSITION 4.2. - With the above notation and assumptions, let

j1 and d be as in (1.4) with Yj replaced by Then

where , we have

Proof. We prove the assertion by induction on 111. If I = 0, we
have 0x,g on Uo as in 1.4. We may assume X, because the assertion
is clear by (4.1.2) if ~/0 = X. Let Bx be a sufficiently small open ball
around x. By the cone theorem, Bx n Y is homeomorphic to the topological
cone of n Y in a compatible way with a given Whitney stratification
of Y. (This is proved by using a continuous vector field compatible with the
stratification as well-known.) So we have

By duality, (4.2.1 ) is equivalent to the vanishing of these groups for

n + I  i  2n + 1. (Note that the dual of the A-eigenspace is the 
space.) So we get the assertion in this case, using the corresponding de
Rham complex and the vanishing of the higher cohomology of coherent
sheaves on a smooth Stein space Bx n uo of dimension n + 1.

it is enough to show

This is isomorphic to the dual of ), because
dim Ui, = n - k + 1. So it is enough to show

For this, we may replace Lx n by Bx n (using the cone
theorem). Then we get the assertion by using the same argument as above,
because Bx n is a smooth Stein space of dimension n - k + 1.
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4.3. Proof of Theorem 0.2. - If ~d ~ 1, the assertion follows
from 4.2. So we may assume A d - 1, i.e. J(~) - ~ 1, ... , I see (1.4.3).
We define Kx to be a complex whose j-th component is

where Yo - X, and the differential is given by the Cech restriction

morphism. Let a be the filtration as in [6], II, 1.4.7, and define

Let El,a denote the Ei -complex of the weight spectral sequence (2.4.1)
applied to (4.1.1). For -n  j  -2, we see that

if j + k is even and i k + j + n &#x3E; 0, and it is zero otherwise, using 4.2 and
the primitive decomposition ( 1.4. 2) . So we get

and is a quotient complex of We have the isomorphism
for degree  -1 if the last assumption of 0.2 is satisfied, i.e. if for ~I~  n
we have n Lx, C) = 0 except for j = 0 or 2n + 1 - 2111.

Let be the Koszul complex for vi = id:C --+ C

(1  i  m). Then

and is a direct factor of because YI may be
reducible if III - n. So we may replace Kx with the Koszul complex as
long as we calculate the cohomology of degree  n - 1. Since this Koszul
complex is acyclic and the rank of its j-th component is ( ~ ) , the rank of the
nonzero cohomology group (i.e. the image of the differential 
is (’~’z-1 ) for j  n - 1 by the binomial relation. So the assertion 1

follows from Theorem 0.1, where the shift of the index j comes from the
fact that the complex is indexed instead of - 1.
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For A = 1, we use a (generalized) weight spectral sequence similar
11 A -

This is induced by the weight filtration W on
such that

Since has weights  2 j and N is a morphism of type
( -1, -1 ) , this assertion implies that N = 0 on for j  n - 1

using the Wang sequence 1.7 and considering Ker N. The assertion on the
rank then follows using the Wang sequence and the binomial relation. This

completes the proof of Theorem 0.2.

4.4. Remark. - In [9], the case ai = 1 for any i was treated. The
arguments there (e.g. Th. 3.1) imply also the assertion on the rank in 0.2
in this case (see also [5], [15] for the case of a generic central arrangement),
and Th. 5.1 corresponds to the vanishing results in (0.2). In Cor. 4.1, it is
proved that the monodromy is trivial for j  n - 1 in this case.

4.5. Proof of Theorem 0.3. - Let 0x and let

ju : U - E denote the inclusion morphism. By (1.5.2) we have canonical
isomorphisms (compatible with T)

By (1.4), 0x is a local system of rank 1 if A~ = 1, and 0x = 0 otherwise. So
the action of the monodromy T on 0x and Hi(Fx, is the multiplication
by A (i.e. semisimple). The monodromy of 0x around Yj is given by the
multiplication by ~-a~ . By (4.5.1 ) we get

Since we assume that the Yi are principal, we have

using the weak Lefschetz theorem, because is affine where Eg’ is the
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proper transform of x. Indeed the last assertion can be reduced to the
case X smooth, replacing X with an ambient smooth space, because
is principal. So we get

If À d = 1, then it is known that 0x is a constant sheaf on U. (Indeed,
EB À:FÀ is the direct image of a constant sheaf on a finite covering of U
which is ramified over E n Y’, see [20], etc.) Let Dj E n Yi’, and be

the disjoint union of D1 Dj for III - I~ where Do = E. Then the
cohomology of U is calculated by using the weight spectral sequence [6]

By assumption the constant sheaf Qx [n + 1] is a perverse sheaf, and
hence so are Qy¡[n + for any I, where Y, Yi, see (1.6). On
the other hand, it is known that, if there is a blow-up ~r : X’ ~ X with
a point center such that X’ and the exceptional divisor E are smooth,
then the primitive cohomology of E is isomorphic to the stalk of the
intersection cohomology ICXQ of X at x. (Indeed, by the decomposition
theorem [2], ICxQ[-n - 1] o M’ with supp M’ - ~x~,
and M is symmetric with center n + 1, i.e. 

by the relative hard Lefschetz theorem for 7r. On the other hand,
H’ (E, ~) - M8, and it is symmetric with center n

by the classical hard Lefschetz theorem. Then the assertion follows

from the Lefschetz decomposition because H3(E, Q) = M3 for j &#x3E; n.)
So the j-th primitive cohomology of the exceptional divisor vanishes

for 0  j  dim X - 1, using an exact sequence as in (4.1.3). Similar
assertions hold also for any Y[.

For 0  j  n, the above arguments imply that

Furthermore, the differential is given by the co-Cech Gysin morphism. Thus
the cohomology of the El-complex of (4.5.5) for j  n is calculated by
that of

where the Koszul complex K ((C; vl , ... , is as in 4.3. So the assertion on

the Hodge type and the rank in 0.2 holds for j  n - 1 in this case.
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Combined with (4.5.4), this implies

Lemma 2.5. This

4.6. Remark. - With the assumption of 4.5, assume further X
smooth. Then it is known that is explicitly calculated by using dj.
Indeed, we have by (4.5.5)

Furthermore, by the theory of Chern classes (see e.g. [11]), the topological
Euler characteristic x(DI) is the coefficient of T n in

because the k-th Chern class of the tangent bundle of D, gives the

topological Euler characteristic dimD/(= n - and the

restriction of a cycle on P~ to DI is essentially same as the intersection
with DI. Here the truncated formal power series ring is identified with the

cohomology ring of pn so that (1 + is the total Chern class of the

tangent bundle of P , and 1 + djT is that of the normal bundle of D~ .
Since 1

coefficient of T n in

For m = 1 and al = 1, this is compatible with a well-known formula for the
Milnor number of a homogeneous hypersurface isolated singularity (using
Theorem 0.3), i.e.

In the case of a generic central arrangement (i.e. dj = 1), the above assertion
implies

This is compatible with the formula in [5], [15] using Theorem 0.3.
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In general, we can verify that the coefficient of T~ in

is a polynomial in dl,..., which is equal to

in the fraction field Q(di, - .., c’). This follows by induction on m, using

Furthermore, the above polynomial vanishes for 1 - m  k  0, because it
is a polynomial, and has negative degree. So we see that for m &#x3E; 1 is

a polynomial in dl, ... , which is equal to
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defines a divisor with simple normal crossings on E B f,;~ll (0) (where fj is

viewed as a section of L°3 ) .
Let X’ be the total space of the dual of the line bundle L with the

projection p : E. It is the blow-up of the affine cone X at the origin,
and the exceptional divisor is identified with E. Let

as (not necessarily reduced) divisors on E. Let Y~ be the proper transform
of in X’. Let Do,oo be the greatest common divisor of Do and D,,,
and put

Then we have a canonical decomposition

where Yer = p*Do,~ and Yhor corresponds to a rational section of the
line bundle such that

Assume there is an embedded resolution 7r : E’ -~ E of Do such that

Do U Doo is a divisor with normal crossings on a neighborhood of Do.
(This is satisfied in the case n = 2.) Let X~ 2013~ X’ be the base change
of 7r: E’ --~ E by p. We can similarly define.

Blowing up further if necessary, we may assume

Then we get an embedded resolution of (0) by iterating blow-ups of X’
along the irreducible components of Indeed, Yhor may be locally
defined by s = with xl, ... , xn local coordinates of E’ and s a

local coordinate of the line bundle so that the blow-up along f xi = s = 01
corresponds to the substitution of s by sxi where mi decreases by 1.

For simplicity, assume n = 2, Do is a reduced divisor with simple
normal crossings, and intersects Doo at smooth points of Do. Since the
embedded resolution can be obtained by iterating blowing-ups with point
centers, we can verify that Dbred may be assumed to be isomorphic to Do,
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and does not intersect (calculating the multiplicities of the exceptional
divisors). If furthermore Do is smooth, then the exceptional divisor of the
blow-up along Dorea is a trivial P1-bundle over Dored, because the proper
transform of Y’ gives a trivialization.

For example, if Do (resp. Doo) is defined locally by y = 0 (resp. x = 0)
with multiplicity 1 (resp. m), then the resolution is obtained by iterating
m times blow-ups along a point of the proper transform of Do. Let Cj
denote the proper transform of the exceptional divisor of the j-th blow-up
for I  j  m. Then

where D~ is the proper transform of Doo (with multiplicity m), and

A.2. Conditions for non semisimplicity. - With the notation
and the assumptions of 1.5, assume n = 2. We consider the conditions for
the non semisimplicity of the monodromy on Q) x . Define

Let u be an element of Ell,2 in (1.5.3). It may be viewed as an element of

because vanishes for Here the Tate

twist ( -1 ) is trivialized by choosing 
The first condition on u is that it is annihilated by the differential dl

of the spectral sequence, i.e. its images in

vanish. This condition is necessary to assure that it defines an element
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The second condition is that its image in E
does not belong to the image of i . This condition is

necessary to assure that its image by N does not vanish in Gro ~) ~ .

A.3. Example. - Let

where n = 2. Then E = I~l x I~1 with coordinates (uo, Ul;VO, VI) such that

We apply the arguments in (A.1) to

where x, g2 = ~2, etc., and L is induced by O(I) on p3. Let (u, v) be
the affine coordinates on 0} C E such that u = uo/ul, v = vo /vi .
Let s be the coordinate of the line bundle over 01, which is induced
by w. Then Y~ near (0,1;0, 1) is locally defined by

because g = w (xlw) -:r.w2(ylw)2 (and similarly for h), where w is actually s.
We have a similar assertion on a neighborhood of (0,1; 1,0). So Y’ has
four reduced components (defined by v ± su = 0, etc.) and one multiple
component (defined by u4 = 0) .

Let Zl, Z2 be the divisors defined by vo and vl respectively. Then Dr,d
in A.1 for g (resp. h) is Zl (resp. Z2 ), and Dóed consists of (o,1; o, 1 )
(resp. (o,1; l, 0) ) . Let Jr : E’ -7 E be the blow-up along these two points with
exceptional divisors Cl , C2. This gives a resolution satisfying (A.1.1 ) by the
last argument of A.1 where m = 1. Let Zi , Z2 be the proper transforms
of Zl , Z2 so that

Let Jr : X’ -~ X’ be the base change of 7r : E’ ~ E by p. Let X" - X’
be the blow-up along Z’ and Z2’ with exceptional divisors El , E2. This
gives an embedded resolution of We see that El is a trivial

P1-bundle over Z1, and the intersection of E1 with the proper transform
consists of two connected components (corresponding to v-su = 0
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and v + su = 0) and these are both isomorphic to Z’ by the projection
(and similarly for E2, Z2). Let Eo be the proper transform of the zero
section E’ by X~ 2013~ X’. For i = 1, 2, the proper transform of will

be denoted by Ei+2. Let Ci be the proper transform of Ci, which is equal
to Eo n E,+2. We will identify Zi with Eo n Ei for i = 1, 2. Note that the
inverse image of the origin is Ei.

Using this resolution together with the conditions in A.2, we can show
that the action of N on is not semisimple We see

that the multiplicities of the irreducible components are even except for the
proper transforms of the four reduced components of Y~’ . We have to find
an appropriate element u as in A.2. We define u by

Here we use the natural order of the exceptional divisors EZ for 0  i  4 to

define these elements, because Cech and co-Cech complexes are involved.
We can verify that the two conditions in A.2 are satisfied by using (A.3.2),
etc. Note that, if Y, is Ei with i = 1 or 2, then

because U1 is the product of Zi’ with I~1 minus two points, and the

monodromy of F)...,1 around the two points are -1 (here we use the Leray
spectral sequence for the projection to Z~). We can also verify that the
Milnor monodromy is semisimple outside the origin, using (A.3.1 ) and 1.5.

A.4. Remark. - For the moment, we do not know any example as
above with X smooth.
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