Some consequences of perversity of vanishing cycles
[Quelques conséquences de la perversité des cycles évanescents]
Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1769-1792.

Pour une fonction holomorphe sur une variété lisse complexe, nous montrons que l'annulation de la cohomologie en bas degré en un point est déterminée par celle aux points voisins, via la perversité du complexe des cycles évanescents. Nous calculons explicitement cet ordre d'annulation lorsque les singularités voisines sont à croisements normaux. Nous en déduisons des résultats sur la taille des blocs de Jordan de la monodromie.

For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.

DOI : 10.5802/aif.2065
Classification : 14B05, 14D05, 14F17, 32S20, 32S25, 32S40, 32S55
Keywords: Milnor fibration, perverse sheaf, vanishing cycles
Mot clés : fibration de Milnor, faisceau pervers, cycles évanescents

Dimca, Alexandru 1 ; Saito, Morihiko 

1 Université de Nice-Sophia-Antipolis, Laboratoire J.A. Dieudonné, UMR 6621, Parc Valrose, 06108 Nice Cedex 02 (France), Kyoto University, RIMS, Kyoto 606-8502 (Japan)
@article{AIF_2004__54_6_1769_0,
     author = {Dimca, Alexandru and Saito, Morihiko},
     title = {Some consequences of perversity of vanishing cycles},
     journal = {Annales de l'Institut Fourier},
     pages = {1769--1792},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2065},
     zbl = {1070.14011},
     mrnumber = {2134223},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2065/}
}
TY  - JOUR
AU  - Dimca, Alexandru
AU  - Saito, Morihiko
TI  - Some consequences of perversity of vanishing cycles
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 1769
EP  - 1792
VL  - 54
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2065/
DO  - 10.5802/aif.2065
LA  - en
ID  - AIF_2004__54_6_1769_0
ER  - 
%0 Journal Article
%A Dimca, Alexandru
%A Saito, Morihiko
%T Some consequences of perversity of vanishing cycles
%J Annales de l'Institut Fourier
%D 2004
%P 1769-1792
%V 54
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2065/
%R 10.5802/aif.2065
%G en
%F AIF_2004__54_6_1769_0
Dimca, Alexandru; Saito, Morihiko. Some consequences of perversity of vanishing cycles. Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1769-1792. doi : 10.5802/aif.2065. https://aif.centre-mersenne.org/articles/10.5802/aif.2065/

[1] D. Barlet Interaction de strates consécutives pour les cycles évanescents, Ann. Sci. École Norm. Sup. (4), Volume 24 (1991), pp. 401-505 | Numdam | MR | Zbl

[2] A. Beilinson; J. Bernstein; P. Deligne Faisceaux pervers, Astérisque, 100, Soc. Math. France, Paris, 1982 | MR | Zbl

[3] J.L. Brylinski Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales (Astérisque), Volume 140-141 (1986), pp. 3-134 | Zbl

[4] N. Budur; M. Saito Multiplier ideals, V-filtration, and spectrum (e-print, math.AG/0305118) | Zbl

[5] D. Cohen; A. Suciu On Milnor fibrations of arrangements, J. London Math. Soc., Volume 51 (1995), pp. 105-119 | MR | Zbl

[6] P. Deligne Théorie de Hodge I, Actes Congrès Intern. Math., Volume 1 (1970), pp. 425-430 | MR | Zbl

[6] P. Deligne Théorie de Hodge II, Publ. Math. IHES, Volume 40 (1971), pp. 5-57 | Numdam | MR | Zbl

[6] P. Deligne Théorie de Hodge III (ibid), Publ. Math. IHES, Volume 44 (1974), pp. 5-77 | Numdam | MR | Zbl

[7] P. Deligne Le formalisme des cycles évanescents, SGA7 (Lect. Notes in Math. 340), Volume Exposé XIII (1973), pp. 82-115 | Zbl

[7] P. Deligne Le formalisme des cycles évanescents, SGA7 (Lect. Notes in Math. 340), Volume Exposé XIV (1973), pp. 116-164 | Zbl

[8] A. Dimca Sheaves in Topology, Universitext, Springer, Berlin, 2004 | MR | Zbl

[9] A. Dimca; A. Libgober Local topology of reducible divisors (e-print, math.AG/0303215)

[10] A. Dimca; M. Saito Monodromy at infinity and the weights of cohomology, Compos. Math., Volume 138 (2003), pp. 55-71 | MR | Zbl

[11] W. Fulton Intersection theory, Springer, Berlin, 1984 | MR | Zbl

[12] M. Kashiwara Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) (Lect. Notes in Math.), Volume 1016 (1983), pp. 134-142 | Zbl

[13] B. Malgrange Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II-III (Luminy, 1981) (Astérisque), Volume 101-102 (1983), pp. 243-267 | Zbl

[14] V. Navarro Aznar Sur la théorie de Hodge-Deligne, Inv. Math., Volume 90 (1987), pp. 11-76 | MR | Zbl

[15] P. Orlik; R. Randell The Milnor fiber of a generic arrangement, Ark. Mat., Volume 31 (1993), pp. 71-81 | MR | Zbl

[16] M. Saito Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., Volume 24 (1988), pp. 849-995 | MR | Zbl

[17] M. Saito Mixed Hodge Modules, Publ. RIMS, Kyoto Univ., Volume 26 (1990), pp. 221-333 | MR | Zbl

[18] D. Siersma Variation mappings on singularities with a 1-dimensional critical locus, Topology, Volume 30 (1991), pp. 445-469 | MR | Zbl

[19] D. Siersma; D. Siersma et al., eds. The vanishing topology of non isolated singularities, New Developments in Singularity Theory (2001), pp. 447-472 | Zbl

[20] J.H.M. Steenbrink; Alphen and Rijn Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) (1977), pp. 525-563 | Zbl

Cité par Sources :