On reduction of Hilbert-Blumenthal varieties
[Sur la réduction des variétés de Hilbert-Blumenthal]
Annales de l'Institut Fourier, Tome 53 (2003) no. 7, pp. 2105-2154.

Soit O 𝐅 l’anneau des entiers d’un corps de nombres totalement réel 𝐅 de degré g. Nous étudions un nombre premier p fixé, la réduction modulo p de l’espace de modules classifiant les O 𝐅 -variétés abéliennes séparablement polarisées de dimension g. Nous construisons une stratification schématique par les types a du lieu de Rapoport et étudions sa relation avec la stratification par les pentes. En particulier, nous retrouvons les résultats principaux de Goren et Oort [J. Alg. Geom., 2000] sur les stratifications lorsque p n’est pas ramifié dans O 𝐅 . Nous démontrons également la conjecture de Grothendieck forte pour les espaces de modules dans certains cas, notamment lorsque p est totalement ramifié dans O 𝐅 .

Let O 𝐅 be the ring of integers of a totally real field 𝐅 of degree g. We study the reduction of the moduli space of separably polarized abelian O 𝐅 -varieties of dimension g modulo p for a fixed prime p. The invariants and related conditions for the objects in the moduli space are discussed. We construct a scheme-theoretic stratification by a-types on the Rapoport locus and study the relation with the slope stratification. In particular, we recover the main results of Goren and Oort [J. Alg. Geom., 2000] on the stratifications when p is unramified in O 𝐅 . We also prove the strong Grothendieck conjecture for the moduli space in some restricted cases, particularly when p is totally ramified in O 𝐅 .

DOI : 10.5802/aif.2002
Classification : 14G35, 14L05
Keywords: Hilbert-Blumenthal varieties, Dieudonné modules, stratifications, deformations
Mot clés : variétés de Hilbert-Blumenthal, modules de Dieudonné, stratifications, déformations

Yu, Chia-Fu 1

1 National Tsing-Hua University, National Center for Theoretical Sciences, 3rd General Bldg, 101 Sec. Kuang-Fu road, Tsinchu 30043 (Taiwan)
@article{AIF_2003__53_7_2105_0,
     author = {Yu, Chia-Fu},
     title = {On reduction of {Hilbert-Blumenthal} varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {2105--2154},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {7},
     year = {2003},
     doi = {10.5802/aif.2002},
     zbl = {02093468},
     mrnumber = {2044169},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2002/}
}
TY  - JOUR
AU  - Yu, Chia-Fu
TI  - On reduction of Hilbert-Blumenthal varieties
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 2105
EP  - 2154
VL  - 53
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2002/
DO  - 10.5802/aif.2002
LA  - en
ID  - AIF_2003__53_7_2105_0
ER  - 
%0 Journal Article
%A Yu, Chia-Fu
%T On reduction of Hilbert-Blumenthal varieties
%J Annales de l'Institut Fourier
%D 2003
%P 2105-2154
%V 53
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2002/
%R 10.5802/aif.2002
%G en
%F AIF_2003__53_7_2105_0
Yu, Chia-Fu. On reduction of Hilbert-Blumenthal varieties. Annales de l'Institut Fourier, Tome 53 (2003) no. 7, pp. 2105-2154. doi : 10.5802/aif.2002. https://aif.centre-mersenne.org/articles/10.5802/aif.2002/

[BG] E. Bachmat; E. Z. Goren On the non-ordinary locus in Hilbert-Blumenthal surfaces, Math. Ann., Volume 313 (1999), pp. 475-506 | DOI | MR | Zbl

[C] C.-L. Chai Newton polygons as lattice points, Amer. J. Math., Volume 122 (2000), pp. 967-990 | MR | Zbl

[CN] C.-L. Chai; P. Norman Bad reduction of the Siegel moduli scheme of genus two with Γ 0 (p)-level structure, Amer. J. Math., Volume 112 (1990), pp. 1003-1071 | DOI | MR | Zbl

[dJO] A.J. de Jong; F. Oort Purity of the stratification by Newton polygons, J. Amer. Math. Soc., Volume 13 (2000), pp. 209-241 | DOI | MR | Zbl

[DP] P. Deligne; G. Pappas Singularités des espaces de modules de Hilbert en caractéristiques divisant le discriminant, Compositio Math., Volume 90 (1994), pp. 59-79 | Numdam | MR | Zbl

[GO] E.Z. Goren; F. Oort Stratifications of Hilbert modular varieties in positive characteristic, J. Algebraic Geom., Volume 9 (2000), pp. 111-154 | MR | Zbl

[Gr] A. Grothendieck Groupes de Barsotti-Tate et Cristaux de Dieudonné, Les Presses de l'Université de Montréal, 1974 | MR | Zbl

[K1] R. E. Kottwitz Isocrystal with additional structure, Compositio Math., Volume 56 (1985), pp. 201-220 | Numdam | MR | Zbl

[K2] R. E. Kottwitz Points on some Shimura varieties over finite fields, J. Amer. Math. Soc., Volume 5 (1992), pp. 373-444 | DOI | MR | Zbl

[LO] K.-Z. Li; F. Oort Moduli of Supersingular Abelian Varieties, Lecture Notes in Math, vol. 1680, Springer-Verlag, 1998 | MR | Zbl

[Me] W. Messing The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math, 264, Springer-Verlag, 1972 | MR | Zbl

[Mu] D. Mumford Abelian Varieties, Oxford University Press, 1974 | Zbl

[N] P. Norman An algorithm for computing moduli of abelian varieties, Ann. Math., Volume 101 (1975), pp. 499-509 | DOI | MR | Zbl

[NO] P. Norman; F. Oort Moduli of abelian varieties, Ann. Math., Volume 112 (1980), pp. 413-439 | DOI | MR | Zbl

[O1] F. Oort Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris, Sér. I Math., Volume 312 (1991), pp. 385-389 | MR | Zbl

[O2] F. Oort Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math., Volume 152 (2000), pp. 183-206 | DOI | MR | Zbl

[O3] F. Oort; (ed. by C. Faber, G. van der Geer and F. Oort) Newton Polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties (Progress in Mathematics), Volume 195 (2001), pp. 417-440 | Zbl

[O4] F. Oort Endomorphism algebras of abelian varieties, Algebraic geometry and commutative algebra, in honor of M. Nagata (1988), pp. 469-502 | MR | Zbl

[P] G. Pappas Arithmetic models for Hilbert modular varieties, Compositio Math., Volume 98 (1995), pp. 43-76 | Numdam | MR | Zbl

[R] M. Rapoport Compactifications de l'espaces de modules de Hilbert-Blumenthal, Compositio Math., Volume 36 (1978), pp. 255-335 | Numdam | MR | Zbl

[RR] M. Rapoport; M. Richartz On the classification and specialization of F-isocrystals with additional structure, Compositio Math., Volume 103 (1996), pp. 153-181 | Numdam | MR | Zbl

[RZ] M. Rapoport; Th. Zink Period Spaces for p-divisible groups, Ann. Math. Studies, 141, Princeton Univ. Press, 1996 | MR | Zbl

[S] J.-P. Serre Local fields, GTM, 67, Springer-Verlag, 1979 | MR | Zbl

[Y1] C.-F. Yu On the supersingular locus of Hilbert-Blumenthal 4-folds, J. Alg. Geom., Volume 12 (2003), pp. 653-698 | DOI | MR | Zbl

[Y2] C.-F. Yu Lifting abelian varieties with additional structures, Math. Z., Volume 242 (2002), pp. 427-441 | DOI | MR | Zbl

[Z1] T. Zink Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte Math., Teubner, Leipzig, 1984 | MR | Zbl

[Z2] T. Zink The display of a formal p-divisible groups, Cohomologies p-adiques et applications arithmétiques (Astérisque), Volume 278 (2002), pp. 127-248 | Zbl

[Z3] T. Zink Isogenieklassen von Punkten von Shimuramannigfaltigkeiten mit Werten in einem endlichen Körper, Math. Nachr., Volume 112 (1983), pp. 103-124 | DOI | MR | Zbl

Cité par Sources :