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ON REDUCTION OF HILBERT-BLUMENTHAL
VARIETIES

by Chia-Fu YU

Introduction.

Let F be a totally real number field of degree g and OF be its ring
of integers. A Hilbert-Blumenthal variety parameterizes the isomorphism
classes of abelian OF-varieties of dimension g with a certain condition

(and with certain additional structure). The purpose of the condition is
to exclude some bad points in characteristic p such that the integral model
becomes flat. In [R], Rapoport used the condition that the Lie algebra of the
abelian OF-scheme over a base scheme S is a locally free OFQ9S-module. We
will call it the Rapoport condition and the Rapoport locus for the defined
moduli space. The condition was modified later by Deligne and Pappas [DP]
in order to confirm the properness of the compactification constructed in

[R] in the case of bad reduction. The moduli spaces defined by Deligne and
Pappas are usually referred as the Deligne-Pappas spaces. The irreducibility
and singularities of the Deligne-Pappas spaces are determined in [DP]. In
the present paper we study the reduction of these moduli spaces modulo
a fixed rational prime p. More precisely, we consider the moduli spaces of
abelian OF-varieties of dimension g equipped with a compatible prime-to-p
polarization. The geometry of reduction of these moduli spaces have been
studied by E. Goren and F. Oort in [GO] when p is unramified in OF.

Keywords: Hilbert-Blumenthal varieties - Dieudonn6 modules - Stratifications - Defor-
mations.
Math. classification: 14G35 - 14L05.
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Let A4 Dp denote the moduli stack over SpecZ(p) of separably po-
larized abelian OF-varieties of dimension g. This is a separated Deligne-
Mumford algebraic stack locally of finite type and one can identify the
moduli space defined in [DP] as a connected component of see [DP,
2.1~. We will call it the Deligne-Pappas space. Let .JlilR denote the Rapoport
locus of .JIiIDP, which parameterizes the objects in .NIDP satisfying the
Rapoport condition. Let A4DP := Fp and M := MR ø IFp be the
reduction of and JIiLR modulo p respectively. Let 0 := OF ø Zp and
k be an algebraically closed field of characteristic p.

To each abelian OF-variety A over k, we define two natural invariants
called the Lie type and a-type. Lie types are the invariants that classify
the Lie algebras Lie(A) of A as OF 0 k-modules, and a-types are those
classifying the a-groups of A [LO]. One purpose of this paper is to under-
stand these invariants (including the Newton polygons) using Dieudonn6
modules. Some results on the relation among these invariants and related

conditions are obtained in Sections 2-3.

A natural problem is whether these invariants arising from the
Dieudonn6 modules in question can be realized by abelian varieties with
the additional structure (cf. 1.5). This is the integral analogue of a problem
of Manin, see [02]. The following theorem (7.4) answers it affirmatively.

THEOREM 1. Any quasi-polarized p-divisible 0-group (H, À, t)
(1.4) over k is isomorphic to the p-divisible attached to a polarized abelian
OF-variety.

This result implies that the strata defined by these invariants are
all non-empty. As an application of Theorem 1, we construct an explicit
example of a point s in the complement of the Rapoport locus, which is both
the specialization of a point tl in characteristic 0 and also the specialization
of an ordinary point t2. Notice that both t, and t2 are in the Rapoport
locus. This example directly shows that the construction MR of Rapoport
is not proper over SpecZ(p) and a modification of the moduli space is

needed. Furthermore, it was pointed out in [DP] that the construction of
Rapoport compactifies the Deligne-Pappas space.

The proof of the algebraization theorem goes as follows. We first show
that the formal isogeny classes are determined by the Newton polygons
using a result of Rapoport-Zink [RZ] and of Rapoport-Richartz [RR]. Then
we prove the weak Grothendieck conjecture (see 1.13). It follows that any
possible Newton polygon can be realized by an abelian variety in question.
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By the result on formal isogenies and a theorem of Tate, all the p-divisible
groups with additional structures can be realized by abelian OF-varieties
in question.

The main part of this paper is studying the strata induced from
these three invariants. The stratification by Lie types coincides with the
stratification studied by Deligne and Pappas [DP]. The largest stratum is
the Rapoport locus. We define a scheme-theoretic stratification by a-types
on the Rapoport locus. The relation between the alpha stratification and
the slope stratification on the Rapoport locus is given. As the Rapoport
locus is the whole space in the case of good reduction, we recover the main
results of E. Goren and F. Oort [GO] on the stratifications.

We now state the results. Write and let

ev and f v be the ramification index and residue degree of v respectively.
Let A be an abelian OF-variety over k and let be the

decomposition of the associated p-divisible group (with respect to the 0-
action). We define in (1.9) the a-type a(Hv ) for each component Hv and
put a(A) = (a(Hv ) )v . When A satisfies the Rapoport condition, the a-type
a(Hv) of each component is of the form where 0  ev for

all i E There is a natural partial order on the set of these a-types.
The reduced a-number of Hv is defined to be dimk (ap, ( 1.9), where

is a uniformizer of 0 v .

THEOREM 2. - Let a be an a-type which occurs in .Jlil. The closed

subscheme that consists of objects with a-type &#x3E; a is smooth
over SpecFp of pure I (Theorem 5.4).

Let a = be an a-type which occurs in M. We call av - (ai)i i
is spaced if 0 for all i E Z/fvZ and a is spaced if Qv is spaced for
all v lp. We av, bv is spaced} (cf. [GO, p. 112]).
We refer to (1.10) for the definition of the function sv, which sends certain
rational numbers to possible slope sequences at v.

THEOREM 3. - (1) If a = (qv)v is spaced, then the subset of 

consisting of points whose slope sequence is is dense in 

(Theorem 6. 8~ .

(2) The generic point of each irreducible component of has slope
sequence &#x3E; (Corollary 6.9).

THEOREM 4. - (1) Let U be the subset of M consisting of points
with reduced a-number at most one for each component vip. Then the
strong Grothendieck conjecture holds for U (Theorem 6.13).
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(2) The weak Grothendieck conjecture for M holds (Corollary 6.16).

(3) The strong Grothendieck conjecture for holds when all the

residue fields of OF are IFp (Theorem 6.20).
For the statement of the Grothendieck conjectures, we refer to [GO,

5.1] or (1.13).
The methods are based on the previous works of F. Oort [02],

E. Goren and F. Oort [GO], and the author [Yl]. Using the explicit
deformation method developed by Norman [N], Norman-Oort [NO], and
T. Zink [Z2], we construct the universal deformation of any Dieudonn6
module in the Rapoport locus. Then we study systematically the alpha
stratification and the slope stratification on the formal neighborhood
around the point. The results above are extracted from the formula of

iterating the Frobenius map. It is possible to extract finer information

beyond the reduced a-number one from our formula. We leave this possible
generalization in the future when the finer information becomes useful.
We follow the approach of [02] and [Yl], which is different from that of
Goren and Oort [GO]. Therefore, we do not repeat the computation done in
loc. cite. F. Andreatta and E. Goren earlier obtained similar results in the

case when p is totally ramified. Our work is independent from their results.

In [C], C.-L. Chai studied the combinatorial properties of Newton
points for connected reductive quasi-split algebraic groups, inspired by
earlier works of R. Kottwitz [Kl], K.-Z. Li and F. Oort [LO], M. Rapoport
and M. Richartz [RR]. He gave a group-theoretic conjectural description
of the dimensions of Newton strata of good reduction of Shimura varieties.
The main motivation of this work is to examine whether his group-theoretic
description of Newton strata for quasi-split groups applies for the simplest
case of bad reduction. Our results support his description even when the
reductive group G in question is no longer unramified. One may expect
that Chai’s description applies for the bad reduction case as well, under
the assumption of the existence of good integral models of Shimura varieties
for certain special subgroups Kp C G(Qp). We answer a question of Chai
affirmatively [C, Question 7.6, p. 984] on the dimensions of Newton strata
in the Hilbert-Blumenthal cases when p is totally ramified.

The results of this work reveal an important feature: the stratifications
on the smooth locus of bad reduction of Hilbert-Blumenthal varieties

behave very similarly as those on the good reduction. The reader can
compare the results stated above and those of [GO] for the good reduction
case. A fundamental question is whether this feature holds for more general
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PEL-type Shimura varieties. We have no idea but expect that the cases of
type C still hold.

The following is the structure of this paper. In Section 2 we describe
the structure of the Dieudonn6 module of general polarized abelian OF-
varieties of dimension g. In Section 3 we classify the formal isogeny classes
explicitly. In Section 4 we provide the normal forms of the Dieudonn6 mod-
ules in the Rapoport locus. In Section 5 we give the natural generalization
the alpha stratification on the Rapoport locus and study its properties.
In Section 6 we study systematically the alpha stratification and the slope
stratification on formal neighborhoods in the Rapoport locus, by the meth-
ods of [N], [NO], [Z2], and [02] as explained before. In Section 7 we establish
a theorem of algebraization concerning the p-divisible groups in question.
In Section 8 we give the explicit example as explained before. In the last
section we perform a computation of the Hecke correspondence. Using this
result, we describe the singularities of the supersingular locus near the su-
perspecial point constructed in Section 8.

We should note that there is no assumption of p in this paper. As most
of the time we are dealing with conditions and properties of the associated
p-divisible group and local properties of the moduli spaces. It is enough
to treat each component of the p-divisible groups and that of the local
moduli spaces by the Serre-Tate Theorem. Without loss of generality we
may assume that there is one prime over p. It is clear how to state the

results in this paper without this assumption of p. We feel not necessary
to repeat this.

We use the convenient language of algebraic stacks. The reader is free
to replace the word "algebraic stack(s)" by "scheme(s)" in this paper by
adding an auxiliary level structure. All schemes here are implicitly assumed
to be locally noetherian.
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1. Notations, terminologies and definitions.

1.1. Fix a rational prime p. Let F be a totally real field of degree g
and OF be the ring of integers. Let v be a prime of OF over p. Let Fv denote
the completion of F at v and C7v denote the ring of integers. Denote by ev
and f v the ramification index and residue degree of v respectively. Denote
by 7r, a uniformizer of the ring of integers C7v and write gv :- [Fv : Qp].

Let v1, ... , vs be the primes of OF over
and Write and

1.2. Let 1~ be a perfect field of characteristic p. Denote by W :=

W(k) the ring of Witt vectors and B(k) its field of fractions. Let a be the
Frobenius map on W.

1.3. Let B be a finite dimensional semi-simple algebra over Q with a
positive involution *. Let OB be an order of B stable under the involution
*. Recall that a polarized abelian OB-variety [Z3] is a triple (A, À, t) where
A is an abelian variety, t : OB --~ End(A) is a ring monomorphism
and A : ~4 2013~ At is a polarization satisfying the compatible condition
À t(b*) for all b E OB.

Let A be an abelian variety up to isogeny with t : B -~ End(A). Then
the dual abelian variety At admits a natural B-action by :== ~(~*)~.
The compatible condition above is saying that the polarization A : A ~ At
is OB-linear.

1.4. Let Bp be a finite dimensional semi-simple algebra over Qp with
an involution *. Let Op be an order of Bp stable under the involution *.
A quasi-polarized p-divisible Op-group is a triple (H, À, t) where H is a p-
divisible group, t : Op - End(H) is a ring monomorphism and A : H --+ Ht
is a quasi-polarization (i.e. -A) such that A t(b*) - for all

b E Op .
For convenience, we also introduce the term "quasi-polarized

Dieudonn6 Op-modules" for the associated Dieudonn6 module to a quasi-
polarized p-divisible Op-group over k. It is a Dieudonn6 module M over k,
equipped with a W-valued non-degenerate alternating pairing ( , ) and a
W-linear action by Op, that satisfies the usual condition (x, a* y)
and (Fx, y) = (x, for all a E Op and x, y E M.
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1.5. When BP - B Q9 Qp and Op = OB ~) Zp. We call a quasi-
polarized p-divisible Op-group (H, A, t) over k algebraizable if there is a

polarized abelian OB-variety over k such that the associated

p-divisible group (A(p), AA(P), LA(P)) is isomorphic to (H, A, t) with the
additional structure over k.

1.6. Let S’ be a base scheme and A be an abelian OF-scheme of
relative dimension g over S. Recall that the abelian OF-scheme A satisfies
the Rapoport condition [R] if the Lie algebra Lie(A) is a locally free

OF oz Os-module. Clearly this condition is local and open on S.

We denote := the module of OF-linear
symmetric homomorphisms from A to its dual At over S. Notice that

P(A) is the module of global sections of the polarization sheaf. If ,S is

connected and P(A) is non-zero, then P(A) is a rank one projective OF-
module together with a notion of positivity. It is shown [R, Prop. 1.12] that
P(A) is non-zero when ,S’ is the spectrum of a field or an artinian ring.

We say the abelian OF-scheme A satisfies the Deligne-Pappas condi-
tion if for any connected component S’ of S, the module P(As,) is non-zero
and the induced morphism

is isomorphic.

When ,S’ is the following simpler condition plays a
similar role: the abelian OF-scheme A admits an OF-linear prime-to-p
degree polarization.

1.7. For the reader’s convenience, we recall the Kottwitz determinant
condition [K2, Sect. 5]. Let V be a one-dimensional F-vector space. Let
f ei I be a Z-basis of OF and X = be some indeterminants. We define

f (X) det(~ e,X,; V). The polynomial f is in Z[X], loc. cit. We say that
the Lie algebra Lie(A) (or the abelian OF-scheme A) satisfies the Kottwitz
determinant condition if

in Os [X]. This condition does not depend on the choice of the basis, and
it is a closed condition in a family of abelian OF-varieties. If [Lie(A)] =
[OF 0 in the Grothendieck group of OF ® Os-modules of finite type,
then A satisfies the Kottwitz determinant condition.
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1.8. Suppose that the ground field k contains the residue fields of
OF over p. We fix a place v of OF dividing p. Let H be a p-divisible 0,-
group of height 2gv over k and M be its associated covariant Dieudonn6
module. Note that M is a free W 0zp 0,-module of rank two. This follows
from that the Frobenius operator F induces a bijection on M 0 B(k). We
identify the set of embeddings W) with in a way that

a : i - I + 1, where Cwr is the maximal 6tale extension of Zp in We

write w EBiEZ/ fvZ 
The Lie type of H is defined to be

if

as Ov 0 k-modules for some integers el, e2.

1.9. Let H and M be as above. The a-type of H is defined to be

if

as Ov Q9 k-modules for some integers al, a2. The usual a-number is denoted
by the dimensional of the k-vector space M/(F, V)M.

If H satisfies the Rapoport condition, that is, Lie(H) is a free

OvQ9Zp k-module, then the a-type a(H) is of the form (10, and we write

a (H) _ (a’)i instead. In this case, we define the partial order: (a2 )  (bi )
if for all i E Z / fvZ, and define t(H) :- dimk M/((F, V)M + 1TvM),
called the reduced (usual) a-number of H.

1.10. The slope sequence (the Newton polygon) of H we denote
by slope(H). . It is either ( 2 , ... , 9v-Z , ... , for some integer9v 9v 9v 9v

 gv / 2, or {1/2 , ... , 1/2 } (Lemma 3.1 ) .
We often identify a Newton polygon with its slope sequence. Let S(gv)

denote the subset of Q:
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For each i E we denote by sv(i) the slope i- , 9v 9’v I gv

The map sv identifies the set S’(gv) with that of possible slope
sequences arising from p-divisible Ov-groups. The order on ,S’(gv) induced
from Q is compatible with the Grothendieck specialization theorem.

There are two possible definitions for the slopes of a Dieudonn6
module. One uses the slopes of the p-divisible group (that is, the F-

slopes of the contravariant Dieudonn6 module, or the V-slopes of the
covariant one). The other just uses its F-slopes, no matter which Dieudonn6
theory (covariant or contravariant) one chooses. We adopt the latter. As
Dieudonn6 modules considered in this paper are symmetric, the choice will
not effect the results.

1.11. Let A be an abelian OF-variety k. The associated p-divisible
group A(p) : has the decomposition

We define the Lie type and a-type of A by

Set S(g) := TIv/p ,S’(gv), and for each i = (iv)v E S(g), we write
s(i) .- (sv(iv))v. The map s identifies the set S(g) with that of possible
Newton polygons arising from abelian OF-varieties of dimension g. The
slope sequence of A is denoted by

1.12. Let denote the moduli stack over SpecZ(p) of separa-
bly polarized abelian OF-varieties of dimension g. Let denote the

Rapoport locus of A4 DP, which parameterizes the objects in satisfy-
ing the Rapoport condition. Let k(p) be the smallest finite field containing
all the residue fields Denote by the reduction 0z k(p) of

and the reduction A4 R 0z k(p) of the Rapoport locus A4 R

Let {3 be an admissible Newton polygon, that is /3 E S(g). We denote
by M/3 (resp. ,/1~!’-~) the reduced algebraic substack of M that consists of
points with Newton polygon /? (resp. that lies over or equals 13).
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Let a be an a-type on ,~1. Let Ma denote the reduced algebraic
substack of M that consists of points with a-type a. In Section 5, we define
a closed substack, denoted by of M so that x E if and only
if a(x) &#x3E; a.

1.13. We recall the statement of the Grothendieck conjectures [GO,
5.1] and [02, Sect. 6]. Let U be an open subset of MD1. We say the (strong)
Grothendieck conjecture holds for U if for any x E U and any admissible
Newton polygon ,(3  slope(x), then for any neighborhood V of x, there is
a point in V whose Newton polygon is ~3. We say the weak Grothendieck
conjecture holds for U if given any chain of admissible Newton polygons
7i  r2  ...  then there exists a chain of irreducible subschemes of

U: V2 :D ... :D Vs such that where 77i is the generic
point of Y and is the corresponding abelian variety.

2. Dieudonn6 modules.

2.1. Let F be a totally real number field of degree g and OF be its
ring of integers. To simplify notations, we will work on the case that there
is one prime of OF over p in Sections 2-6. The other cases can be reduced to
this case if the problem is local, as stated before. Let e be the ramification
index and f be the residue degree of this prime v, thus g = f. Denote by
Fv the completion of F at v and C7 the ring of integers in Fv . Let our
denote the maximal 6tale extension of Zp in C~. The ring our is isomorphic
to Let 7r be a uniformizer of 0. The element 7r can be chosen from

OF and to be totally positive, by the weak approximation. Let P(T) be
the monic irreducible polynomial of 7r over 

2.2. Let (A, A, c) be a polarized abelian OF-variety of dimension g
over a perfect field k containing and let M be its covariant Dieudonn6

module. The Dieudonn6 module M is a free 00zp W(k)-module of rank
two equipped with a non-degenerate alternating pairing

such that on which the Frobenius F and Verschiebung V commute with
the action of C~, and that (ax, y~ - (x, ay) and (Fx, y) = (x, for
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all x, y E M and a E C7. We call it briefly a quasi-polarized Dieudonne

The ring C~ W(k) is isomorphic to

where E Z/f Z, are embeddings of our into W(k), arranged in a way
that Set Wi := and denote again by 1T

the image of T in W i . The action of the Frobenius map on 0 W(k)
through the right factor gives a map a : W i -~ which sends a - a°

for a E W(k) and 7r. We also have Wi Q9w k = and

Let

be the ai-component of M, which is a free Wi-module of rank two. We
have the decomposition

in which F : MZ -~ Mi+1, V : Mi+1 -~ M’. The summands Mi, Mj
are orthogonal with respect to the pairing ( , ) for i # j. Conversely, a
Dieudonn6 module together with such a decomposition and these properties
is a quasi-polarized Dieudonn6 O-module.

2.3 Let e (A) _ (lei, be the Lie type of A defined in (1.8). The
invariant e(A) has the property that 0  e~  e for i E Z/f Z and j = 1, 2,

g, and that the invariant is a locally constant function in
a family. The last one follows from the fact that the az-component Lie(A)i
of Lie(A) is a locally free sheaf.

In [DP], Deligne and Pappas showed that the stratum of each Lie
type the Deligne-Pappas space, is a smooth locally closed
subscheme, and has dimension g - provided the stratum
is non-empty. We will see that indeed these strata are non-empty (7.4).

2.4. Let (H, A, t) be the p-divisible group attached to (~4,A,~). If

ÀI is another O-linear quasi-polarization on H, then Aa for some

a E Eo := Endo (H) 0 Qp with a* - a, where * is the involution induced
by A. We will show that a E Fv . Let Ao be an O-linear quasi-polarization



2116

of minimal degree. Then any O-linear quasi-polarization is of the form Aoa
for some a E C~ .

The algebra End(H) 0 Qp has rank  4g2 over Qp. Therefore,
[Eo : Fv] x 4. If [Eo : Fv] = 4, then H is supersingular and Eo is a

quaternion algebra over Fv . In this case, the involution is canonical. If

[Eo : F v] = 2, then the involution on Eo is non-trivial. This follows from
the non-degeneracy of the alternating pairing. In either case we show that
the fixed elements by * lie in Fv .

Similarly, we can show that given an abelian OF-variety and let

Ao be an OF-linear polarization of minimal degree at p, then any OF-
linear polarization has the form Aoa for some totally positive element a in
OF 0 Z(p).

2.5. Let = be the inverse of the different of 0 over Zp.
There is a unique W© O-bilinear pairing (, ) : M x M - W 0 D - 1 such that
(x, y) = From the uniqueness, we have (Fx, y) = (x, 
for x, y E M. For each W’-basis Mi, the 7r-adic valuation

is independent of the choice of basis and the degree of the
quasi-polarization is pD [S, Chap. 1, Prop. 12], where

We can choose two Wi-bases Mi for each i E

Z/ f ~ such that

It follows from that we get

If = -d (the exponent of the inverse different), say
that i = 0 achieves the minimum, then

and
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If -d, then we can divide the pairing (,) by a
power of 7r such that -d.

LEMMA 2.6. - ( 1 ) There exists a number N, depending only on g,
with the following property: for any abelian OF-variety (A, t) of dimension
g, there is an OF-linear polarization A such that ordp (deg N.

(2) An abelian OF-variety (A, t) over k admits an separable OF-linear
polarization if and only if dim(A)i are the same for i E Z/f Z.

Proof. ( 1 ) The statement holds as well without the assumption
(2.1), so we prove the general case instead. Let (A, t) be an abelian OF-
variety. By the weak approximation, we can choose an OF-linear polariza-
tion A such that on each component Hv of A(p) the quasi-polarization w
has the minimal degree. Then the exponent of the local degree is given in
(2.5.1), and let N’ be the sum of these local exponents. The number N’
only depends on the Lie type but not on the abelian variety. As there are
finitely many possible Lie types with a fixed dimension g, we take N to be
the maximal one among all N’.

(2) This follows immediately from (2.5.1). D

LEMMA 2.7. - Let S be the spectrum of an artinian ring R with
residue field of characteristic p. Let (A, t) be an abelian OF-scheme over S.
Then for any prime .~ =1= p, there exists an OF-linear polarization
on A.

Proof. We first reduce to the case that R is a field k. Let R be

a small extension of Ro. Suppose there is a prime-to-.~ polarization A on
A 0p Ro, then pA extends over R. This follows from that the obstruction
class lies in which is annihilated by p.

As the map Hom(Ak, Bk) - Hom(Ak, Bk) is co-torsion free, the
map is co-torsion free. It follows 

Therefore, we need to verify the case that k is algebraically closed.

Let A be an OF-linear polarization on A and ~ , ~ the induced pairing
on the Tate module Write into the decomposition
for OF 0 Zi = Each factor Tw is a free rank two Ow-module
and and the pairing (,) induces a non-degenerated pairing on Write

(:r,?/) = for a unique lifting ( , ) : Tw x 0,
and let := ordw(el, e2), where -dw is the exponent of the inverse
different of over and fel, e2l is a Ow-basis for Tw. By the
weak approximation, we can choose a totally positive element a in OF[-’] ]
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such that ordw (a) _ 2013c~ for all Then Aa is an OF-linear polarization
of degree prime-to-£. D

PROPOSITION 2.8. - Let (A, t) be an abelian OF-variety over k. Then
the following conditions are equivalent:

( 1 ) A satisfies the Deligne-Pappas condition.

(2) A admits a separable OF-linear polarization.

(3) [Lie(A)] = [OF 0 k] in the Grothendieck group of OF 0 k-modules
of finite type.

(4) A satisfies the Kottwitz determinant condition.

(5) dimk Lie(A)i are the same for all i E 

Proof. We first remark that (1)===:~,(3) is given in [DP, Prop. 2.7].
The following does not depend on this result.

Let A E P(A) and let (A) denote the submodule generated by A. Then
the composition (A) 0 A - 0 ~4 2013~ At is A. It follows that the degree
of the isogeny P(A) 0 A --~ At divides that of A. It follows from Lemma 2.7
that the isogeny 0 A - At has degree a power of p. This shows that

(1) ~ (2).
The assertion (2) ~ (5) is Lemma 2.6 (2). It is clear that (3)=~(4),

as the determinant function factors through the Grothendieck group.

The semi-simplification of Lie(A), as an OF(gk-module, is kdi,
where di = dimk Lie(A)i. It follows that (3)  (5).

If A satisfies the Kottwitz determinant condition. Then Lie(A) is a

free our ® k-module. Then (5) follows. This completes the proof. 0

2.9. Let S be a Zp-scheme and let (A, t) be an abelian OF-scheme
over S. We consider the similar conditions ( 1’ ) - (5’ ) for (A, t) over S, where
(1’), (2’), and (4’) are the same as (1), (2), and (4) in (2.8) and

(3’) Locally for the Zariski topology, Lie(A) and OF 0 Os are the
same in the Grothendieck group of OF 0 Os-modules of finite type;

(5’) Lie(A) is a locally free our 0zp Os-module.

It clear that (5’) is an open condition and we have the following
implications: (1’) F (2’) and (3’) F (4’) F (5’).
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LEMMA 2.10. If S = Spec R, where R is a noetherian local ring
over Z(p), then the condition (2’) implies the condition (3’).

Proof - If A satisfies the condition (2’), then we have, by [DP,
Prop. 2.7, Remark 2.8], that 2[Lie(A)] = 2[OF 0 R] in the Grothendieck
group. We may assume that R is complete, as R is faithfully flat over R.
Then it suffices to check that [Lie(.4)pj = [OF 0 Rn] for all Rn = R/m".
This follows immediately from the consequence of the Jordan-Horder
Theorem that the Grothendieck group of R’-modules (for any artinian ring
R’) of finite length is torsion-free. D

LEMMA 2.11. Let R be a noetherian local ring and let k be the
residue field. Let A and B be abelian schemes over R. The restriction map
identifies Hom(A, B) as a subgroup of Hom(Ak, Bk). Then for any prime
.~ ~ char(k), the quotient abelian group Hom(Ak, Bk)/Hom(A, B) has no
l-torsions.

Proof. This is a slightly modification of [04, Lemma 2.1~ . We refer
to loc. cit. for the proof. D

THEOREM 2.12. - Let S be an Z(p) -scheme and (A, L) be an abelian
OF-scheme over S. If A admits a separable OF-linear polarization, then A
satisfies the Deligne-Pappas condition.

Proof. Write P’ for the group scheme over S that represents the
functor T ~--~ P(AT). We first show that if A satisfies the Deligne-Pappas
condition, then P’ is a locally constant group scheme over S. We may
assume that S’ is connected and it suffices to show that for any connected

open subset U of S, the restriction map r : P’ (,S’) ~ ~’ (U) is an

isomorphism. It is clear that r is injective. As the Deligne-Pappas condition
is satisfied, the composition P’(U)0Au ---+ At- is isomorphic.
This shows that P’ (U) 0 Au ri At- and P’ (U) .

We now show the statement when S - Spec R, where R is a

noetherian local Let k be the residue field of R and we identify
~’ (R) as a subgroup of P’ (1~) . It follows from Lemma 2.11 that if a prime
~ ~ char(k), then is £-torsion-free. As A admits an separable
OF-polarization, P’(k)/P’(R) is torsion free. It follows that P’(R) = P’(k),
hence that A satisfies the Deligne-Pappas condition.

We now show the statement. We may first assume that ,S’ is connected.

Let s be a point of S. Then there is a Zariski-open connected neighborhood
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Us of s such that ’P’(Spec0s,,), as the latter is generated as a OF-
module by finitely many sections. It follows that Aus satisfies the Deligne-
Pappas condition, hence that is a constant group scheme. This shows

that P’ is constant and P(S) = P’ (Us ) for any s. Therefore, A satisfies
the Deligne-Pappas condition. D

2.13. Let Def ~A, t] denote the equi-characteristic deformation func-
tor of the abelian OF-variety (A, t) over k. It follows from crystalline theory
that Def ~A, t] (k[e]) - Homk00F (V M/pM, M/YM) . From dimk 
(~ ~~~ / (~.a ) , = min(a, bl, we compute that

If (A, t) satisfies the Deligne-Pappas condition, then

2.14. Assume that (A, A, t) is a separably polarized abelian OF-
variety, that is, it lies in the Deligne-Pappas space. Let Def [A, A, t] denote
the equi-characteristic deformation functor of (A, A, t). We can choose
a of (M/pM) i for each i E Z/ fZ such that
(V M / pM) is generated by and that (1Te-I xi , x’) = 1 and

x’) = 0 for all i C Z/ fZ and 0  1~  e -1. The first order universal

deformation (over the deformation ring R) of the abelian OF-variety (A, t)
is given by the following data:

where

Here we assume that e2 for simplicity. The condition Fil being
isotropic is given by ~X i , ~r ~ X 2 ~ = 0 for 0 ~ e - 1. e1, the
condition ~Xi, ~r~X2~ - 0 is automatic. For e1 - 1, the condition
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= 0 gives the equation
conclude that

From this we

This shows that dimk Def ~A, A, L] (1~ ~E~ ) = g if and only if (A, A, t) satisfies
the Rapoport condition.

PROPOSITION 2.15. - The Rapoport locus is the smooth locus in the

Deligne-Pappas space.

Proof - This follows from the dimension statement of [DP, Thm.
2.2] and (2.14.1). D

We will compare the Kottwitz determinant condition with the

Deligne-Pappas condition in an infinitesimal neighborhood. The following
lemma will be used for Proposition 2.17.

LEMMA 2.16. - (1) Let N be an n x n matrix with entries in a ring
R such that the product of any two entries is zero. Let U = Un, where Un
denotes the following lower triangular matrix:

for some indeterminants Yi. Then

where and Ui, k denotes
the of U.

and (of same block partition),
where N’ has the same property as N above and n - ml + ’M2, then
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Proof. - ( 1 ) Write I and , Then

It follows from (2.16.2) and the column expansions that det(U + N) =
Yi + nijuij. From = j), we get (2.16.1).

(2) It follows from (2.16.2) and ( 2 .16 .1 ) that
(2.16.3)
det (U’ + N’ ) = det(Uml + + N22 )

Then the statement follows from

PROPOSITION 2.17. - Let (A, A, t) be a separably polarized abelian
OF-variety. Let Def ~A, t]’ denote the subfunctor of Def ~A, t] that classifies
the objects satisfying the Kottwitz condition. Then Def[A, G~ K (l~~E~ ) =
Def ~A, À, t] (k[E]). °

Proof. Let notations be as in (2.14). Let (Ã, î) be the universal
object over R, which is written as We want to compute the

equations defined by the condition

in for i E Z/ fZ. As [Fil’] = and the right hand side is Yi ,
it reduces to the condition
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It suffices to compute the defining equations on each factor Ri. To ease
notations, we suppress the index i.

We have

as a free R-module and write ,13 for this R-basis. We compute from (2.14)
that

1, let Vk (resp. v~ ) be the column vector for (resp. 
with respect to the basis B. The vectors Vk (resp. v~ ) have coordinates in
mp except e2 (resp. for k x eel) - In the exceptional case, 
and v~ - where is the standard basis. The representative
matrix of the endomorphism on the R-module Fil with respect to the
basis ,t3 is

We have

where and Write

and put
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Then by Lemma 2.16 (2), we have

One directly computes that for el,

As the defining equations of are ai + di - 0 for 0  i 

ei - 1, one has Def ~A, À, ~J (I~ ~E~ ) C Def ~A, ~~ K (1~ EE~ ) . Conversely, let Yi = 0
for i &#x3E; 3, we have

By comparing the coefficients of (2.17.2) with we obtain the equations
a2 + di = 0 for 0  i  ei - 1, thus Def ~A, 
This completes the proof. D

Remark 2.18. - (1) It is known [R, Prop. 1.9] that the forgetful
morphism Def ~A, A, ~~ -~ Def ~A, t] is formally 6tale if (A, A, t) satisfies the
Rapoport condition, and that the Rapoport locus is smooth. In [DP, Thm
2.2], Deligne and Pappas concluded that the singular locus had codimension
two. However, they actually showed that the complement of the Rapoport
locus had codimension two. Proposition 2.15 fills the harmless gap of their
assertion on the dimension of the singular locus.

(2) From (2.13.2) and (2.14.1), one can see that the forgetful mor-
phism Def ~A, A, t] -~ Def ~A, t] is not formally 6tale anymore when (A, A, L)
does not satisfy the Rapoport condition. In this case, the first order uni-
versal deformation (Ã, ’0 of (A, t) does not satisfy the Deligne-Pappas con-
dition nor the Kottwitz determinant condition, but the condition (5’) in
(2.9) still holds for (Ã, ’0.

(3) It seems that the conditions (1’) - (4’) in (2.9) are equivalent when
S is the spectrum of a complete local Noetherian ring. Proposition 2.17
shows some evidence. One can verify this by comparing the defining
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equations from condition (2’) and (4’) in local charts, in the sense of

Rapoport and Zink. In fact, it is not hard to verify the equivalence when
e = 2. However, it is quite complicated in general using this method and
we do not attempt to provide the proof here.

2.19. Let a(A) denote the a-module of A, which is defined to be the
cokernel of the Frobenius map F on Lie(A) = M/VM:

Note that in the covariant theory, the Frobenius map F is induced from
the Verschiebung morphism V : A(P) - A via the covariant functor.

Let each a~i-component of a(A) be

for some integers a’ I. We define the a-type a(A) of A to be the invariant
a(A) _ (~ai, (1.9). Let Ig(A)1 denote the total a-number of A, which
is the dimension of the k-vector space Homk(ap, If the abelian OF-
variety (~4, ~) satisfies the Rapoport condition, then a(A) is of the form

and we write a(A) = instead.

LEMMA 2.20. - The a-module a(A) is canonically isomorphic to the
k-linear dual Homk (ap , At)* of Homk(ap, At) as k 0z OF-modules.

Proof. Let M* denote the contravariant Dieudonn6 functor. Then

we have

2.21. Let a(A) = with be the a-type of A and

e(~4) = be the Lie type. It follows from the elementary divisor
lemma that there are two Wi-bases rj ), of Mi such that

and

We may assume that e2 hence for each i.
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write then

Note that one of band d is a unit. From this we obtain a bound for a-

types : ei and when

e - e2 1. Conversely if e - e2 1  e 1 then we have a i - e - e2 1
and min~e - min~e - 

2.22. If A is superspecial, that is ] - g - e f . We know that
FM = TIM, in other words that FMi-1 = for all i e This

gives ~ei, e2~ _ } and ~al, a2~ _ There

are two possibilities:

1. If ,f is odd, then a(A) - e(A) - (~el, e2~)Z for some nonnegative
integers ei and e2 with ei -t- e2 = e.

2. If f is even, then there are two nonnegative integers ei, e2,

with 0  e, so that

LEMMA 2.23. Let g(A) == (~ai, a2~)i (~el, e2~)i. Then
({e 2013 el, e - and the a-type (~bi, b2~)i of the dual abelian

variety At is given as follows: and

Proof. Write M = M/pM and Mt = Mt /pMt , where Mt is the
Dieudonn6 module of At. From the definition of e (A) - ( ~ ei , e2 ~ ) i, one
concludes that is isomorphic The

perfect pairing M x a perfect pairing

thus .,

Let T := We have dimk T" = dimk 
dimk 
The perfect pairing M x induces a perfect pairing

thus The assertion

is obtained from (2.21) and :
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3. Formal isogeny classes.

In the rest of this paper, k denotes an algebraically closed field of
characteristic p &#x3E; 0.

LEMMA 3.1. Let M be a quasi-polarized Dieudonné 0-module.
Then the slope sequence slope(M) of M is either
for some integer 0 ~ i ~ g/2, or ~ 1 , ... , 1 ~ , 

~ ~ ~ 

Proof. Suppose that M is not supersingular. The F-isocrystal
M o contains Ma,b ® Mb,a’ where Ma,b is the simple F-isocrystal of
single slope a/(a+b) for some integers a, b. We want to show that 2(a+b)r =

2g. We first have an embedding F~ 2013~ = and

any maximal commutative subalgebra of the latter has Qp-dimension
r(a + b), so g) r(a + b). On the other hand, we have 2g &#x3E; 2r(a + b), from
M (g) Ma, b C Mb,a’ Hence = Ma, b C Mb,a’ This completes
the proof. 

~ ~ ~ ~ 

D

3.2. Let S(g) denote the subset of Q which parameterizes possible
slope sequences arising from abelian OF-varieties

For each i e S(g), we denote by s(i) the slope sequence {-..., - g-i ... ,9 9 9

The (linear) order on S(g) induced from Q is compatible with theg

Grothendieck specialization theorem.

3.3. Example. Let M = MO EB ... C be a Dieudonné 0-

module, where Mi is a free W i-module of rank two generated by 
with rb e Let

be the action of the Frobenius F. Then
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where

Here we write for A~~ . Note that M satisfies the Rapoport condition.

Let a, b E Z, a -f- b = g, 0 ~ a  b. Write a = de + r, 0 ~ r  e. Take

for

for and

Then we have

Note that Ai for all i E The characteristic polynomial of
Ff is X 2 - (a + 8)X + pf and ordp(a + 8) = a . Therefore slope(M) _

e

Remark 3.4. - The example constructed above is non-trivial, due
to the following constraint. Let M - Ma,b (D Mb,a, a + b - g, a =,4 b
be a Dieudonn6 0-module which satisfies the Rapoport condition, where

Ma,b (resp. Mb,a) is a Dieudonn6 submodule of single slope a+b (resp.
Then a is a multiple of e. Therefore, one can not construct a

special Dieudonn6 module, in the sense of Manin, with an O-action which
satisfies the Rapoport condition and has arbitrary possible slope sequences
in Lemma 3.1. The proof of this fact is as follows.

Let Ma,b = as in (2.2), where Mi is a free W i-module
of rank one. We can choose a basis xi for M’ such that for

f - 1 and Yx1 - uo7r’Oxo, for some uo E As M satisfies

the Rapoport condition, we have ni = 0 or e. As the slope of Ma,b is a+b , I
we have 1TaUXo for some unit u hence a = no + ... + n f-1, which
is a multiple of e.
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3.5. Let V be a 2-dimensional Fv-vector space with a non-degenerate
alternating form 0 on V with values in Qp such that o (x, ay)
for a E Fv, x, y E V. Let G be the algebraic group of Fv-linear similitudes
over Qp and let GI be the derived group of G. The algebraic group GI is
simply-connected and it is the kernel of the multiplier map c : G - Gm.

Let M be a quasi-polarized Dieudonn6 0-module. We choose an
isomorphism between M ow B(k) and V 0Q B(k) for skew-symmetric
Fv-modules over B(k). Let b E G(B(k)) be the element obtained by
the transport of structure of the Frobenius F on M. The a-conjugacy
class B(G) classifies the (F-)isocrystals with G-structure. The fibre of v(b)
under the Newton map v : B(G) - S(g) is classified by Jb) [RR,
Prop. 1.17], where Jb be the algebraic group over Qp which represents the
group functor [RZ, Prop. 1.12]

LEMMA 3.6. - Jb) = 0.

Proof. Let N := M 0 B(k) be the isocrystal with G-structure.
The group Jb is AutG (N), viewed as an algebraic group over Qp. If M is
supersingular, then AutG (N) is the multiplicative group of a quaternion
algebra over Fv with reduced norm in Qp. If M is not supersingular, then
AutG (N) = F’ x In both cases, Jb) = 0. D

COROLLARY 3.7. - Let MI and M2 be two quasi-polarized Dieudonn6
0-modules. If slope(Mi) = slope(M2), then MI Q9w B(k) and M2 0w B(k)
are isomorphic as quasi-polarized isocrystals with the action by 

COROLLARY 3.8. - Any polarized abelian OF-variety over k is isoge-
nous to one which satisfies the Rapoport condition.

Proof. It follows from (3.3) and Corollary 3.7 that the statement
holds for the associated p-divisible group. Then the assertion follows from
a theorem of Tate. D

4. Normal forms.

4.1. Let M be a non-ordinary separably quasi-polarized Dieudonn6
O-module over k which satisfies the Rapoport condition. Let a(M) _ (ai)i
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be the a-type of M. Note that the Lie type of M is ({0, el)i i and the
constraint for the a-type is 0  ai  e. Denote by T(M) the a-index of M,
which is defined to be the subset of Z/f Z:

Write T for T(M).
Let D-’ = (1T-d) be the inverse of the different of 0 over Zp. There

is a unique W Q9 O-bilinear pairing (,) : M x M -&#x3E; W Q9 0 such that

(r, y) = Trw00jW(1T-d(x, y)). Write M := M/1TM. The module M is
a 2 f -dimensional vector space over k together with a k-linear action by
0/1T == our/p that commutes with the action of F and V. The perfect
pairing ( , ) on M induces an perfect pairing ( , ) on M that satisfies

(Fr, y) = (x, Vy)P and (ax, y) = (x, ay) for all x, y E M, a E 
The decomposition of M (2.2) into ai-eigenspaces

respects the perfect pairing as before (2.2).
As M satisfies the Rapoport condition, VM and FM are free k 0 

module of rank one, and we have that FM = ker V and YM = ker F.

Consider M as a k[F, V]-module, it is isomorphic to N/pN for a separably
quasi-polarized Dieudonn6 our-module N over k of rank 2 f with the same
a-index as M.

PROPOSITION 4.2. - There exists a k-basis f xi, of Mi for each
i E Z/f Z such that

o andyi E VM for all i e Z/f Z,

Proof. It follows from [Yl, Prop. 4.1]. D

Note that this proposition gives the classification of the 7r-torsion

subgroup scheme A[Jr] of separably polarized abelian OF-varieties over k,
classified by the a-indices.
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The following results generalize [Yl, Prop. 4.1, Prop. 4.2, Lemma 4.3],
the proofs are the same and omitted.

PROPOSITION 4.3. - There exists a W’- basis f Xi, of M for each

i E Z/f Z such that

and)

for some ci+l E 

PROPOSITION 4.4. - There exists a Wi-basis Ixi, of Mi for each
t E such that

and Yi

for some ci+i E W’+’.

Note that the i-th component ai i of a(M) is for

i (E T.

LEMMA 4.5. - If M is superspecial (2.22) (in this case ai - e,

then

(1) There exists a W’-basis of Mi for each i E Z/f Z such
that

(2) There exists a Wi-basis of Mi for each i e such

that

E (VM)i and E (Wi)" with ui, where

r = lcm(2, f ),

for all
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For applications, we need to classify all quasi-polarized superspecial
Dieudonn6 0-module, not just separably-polarized ones or those satisfying
the Rapoport condition.

LEMMA 4.6. - Let M be a quasi-polarized superspecial Dieudonn6
0-module over k and let e 1, e2 be as in (2.22).

(1) If f is even, then there is a W Z-basis Xi, Yi for Mi for each
i E Z/f Z such that

for all and

some &#x3E;

if i is odd,
if i is even,

if i is odd,
if i is even,

where V1Te = p.

(2) If f is odd, then there is a Wi-basis Xi, Yi for Mi for each i E 
such that

for some

where V1Te = p.

Proof. The proof is similar to that of [Yl, Lemma 4.3], hence is
sketched.

(1) Write f = 2c and let M’ :- ~x E = Since

M is superspecial, we have F2M’ = pM’ and M’ 0W(JFpf) M. We

can choose bases {Xo, 1 Xi, for (M’)O, (M’)1 respectively such that
, and for some n E Z.

Define recursively for 2  i ~ f by (ii). Then it is straight
forward to verify that Xf = Xo, Yf = Yo and (i).

(2) Write f = 2c + 1 and let M’ . := Ix E MIP2fx of.
From (ii), Yo is required to be Let Xo, Zo be a basis
for (M’)° such that FXo = 7r 1 for some basis f X’, 
Let Y° . If el  e2, then Xo, Yo form a basis. If

el - e2, then we can choose again Xo such that Xo, Yo form a basis for

(M’)°. Define Xi, Yi recursively for 1 ~ i x f by (ii) and it is easy to check
that X f = Xo and Yf = Yo. We found a basis satisfying (ii).
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Write (Xo, Yo) = par’ for some unit p and some integer n. It follows
from (Ff Xo, Ff Yo) = pf (Xo, yo)af that p- - /-t. If we replace Xo by AXO,
then /-t will change to Since is a quadratic
unramified extension, we can adjust Xo by choosing a suitable A such that
(Xo, Yo) _ 1Tn, hence (i) is satisfied. D

4.7. Let M be a non-ordinary separably quasi-polarized Dieudonn6
O-module satisfying the Rapoport condition. Let a(M) - (ai) be the
a-type of M and T = T(M) - be the a-index of M,
where t - IQ(M/1TM)I, the reduced a-number of M. We assume that
0  nl  n2  ...  nt  f and let no . nt - f and nt+1 = ni.
Denote by A(e, f ) the set of possible a-types on the Rapoport locus

with the partial order that (a’) - (b’) if b’, Vi e Z/f Z. An a-type
(ai) E A(e, f ) is called spaced if 0, Vi E Z/f Z, cf. [GO, Sect. 1,
p.112].

By Proposition 4.4, we can choose a W’-basis of Mi for each
i E Z/f Z such that

where

for some ci E W for i C T and ci is a unit if ai  e.

Let Ri := ni - for 1 ~ i ~ t. We have

For 1  s  t, suppose that
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for some coefficients as, /3s, ’"’Is, 6s . It follows from

that

where Recall that we write for ao"

(3.3). Therefore,

4.8. Consider the case that ci = 0 for all z E T. If t is even, write

t = 2d, then we have

and slope(M) = s(i) (3.2), where i = min{
If t is odd, write t = 2d + 1, then we have

and M is supersingular.

PROPOSITION 4.9. - Let M be a separably quasi-polarized Dieudonn6
O-module over k that satisfies the Rapoport condition. If a(M) is spaced,
that is 2 for all 1  i  t, then slope(M) &#x3E; (3.2).
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Proof. We may assume that M is non-ordinary. It follows from

(4.7.3) that

Let N be the Dieudonn6 (9-submodule of M generated by 1Te Xnt’ Ynt’ As
Ff (N) C 1Tlg(M)IN, we get slope(M) &#x3E; s(lg(M)I). 0

In general the slope sequence slope(M) is not determined by a(M).
This is known even in the unramified case [GO]. We will see in (6.8) that
the bound in (4.9) is sharp for spaced a-types, while it is not the case for
non-spaced ones, see (6.10).

4.10. When t = 1, say T = 101, we have

for some co C It is easy to see that M satisfies a Cayley-Hamilton
equation ([02],[Yl]) 0, thus slope(M) = s(i),
where i = minj 2, ord7r 

4.11. = 2, say T = {0,~2} and £2 ~ £1, we have

for some coefficients Then

If ul = 0, then the matrix is 7re£1 , hence slope(M) == S(ef2)-
If ul ~4 0, then we have the Cayley-Hamilton equation
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As e.~l &#x3E; 2 , we see that slope(M) = s(i), where i =

minf In both cases we have that slope(M) = s(i), where
z = min{ 2 , U2 + 

5. Alpha stratification.

5.1. Let p be a fixed prime number. Let denote the moduli

stack over SpecZ(p) of polarized abelian OF-varieties (A, A, t) of dimension
g = [F : Q] with the polarization A of prime-to-p degree. It is a separated
Deligne-Mumford algebraic stack over SpecZ(p) locally of finite type. In

[DP], Deligne and Pappas showed that the algebraic stack is flat and

a locally complete intersection over of relative dimension g, and

the closed fibre ,JIiIDP ® IFp is geometrically normal and has singularities of
codimension at least two. It follows from Deligne-Pappas’ results and the
compactification of Rapoport that the irreducible components of geomet-
ric special fibre 0 Fp are in bijection correspondence with those of
geometric generic fibre 0 Q. Those are parameterized by the isomor-
phism classes of non-degenerate skew-symmetric OF-modules HI (A (C), Z)
for all (A, A, L) 

Let denote the Rapoport locus of It is the smooth locus

(2.15). Let denote the reduction of M  modulo v,
where k(v) is the residue field of OF at v. We will define the stratification
on .~! by a-types scheme-theoretically, (cf. [Yl, Sect. 3]).

5.2. Let ,S’ be a locally noetherian scheme over Spec k(v) and 
(~4,A,~) -~ ,S’ E a polarized abelian OF-scheme over S. The sheaf

is a locally free rank one OF ® Os-module. It admits a

decomposition (2.2),

with respect to the action by OF. Each component is a

locally free of rank one and it admits a filtration of

locally free Os-modules
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Let FAIS : A - be relative Frobenius morphism over S, where :=

A Fabs is the absolute Frobenius morphism on S. It induces
an C~s 0 OF-linear morphism

Let a = (a’) E A(e, f ) (4.7) be an a-type. Let denote the

substack of whose objects 7rA : (A, A, t) --~ ,S’ satisfy the following
condition:

It is clear that the condition (5.2.1) is closed and locally for Zariski topology
is defined by finitely many equations. Therefore is a closed

algebraic substack of 

It is clear that is non-empty as it contains E 0 OF with a prime-
to-p polarization, where E is a supersingular elliptic curve.

LEMMA 5.3. - Let (A, A, t) E M (k) and a(A) = (ai) be the a-type
of A (2.19). Then cokerj

Proof. Let M* denote the contravariant Dieudonn6 module of A.

We identify M* /pM* - and have HI(A,OA) == M* /V M* and
coker FÂ/ k == M*/(F,V)M*. On the other hand, the quasi-polarization
gives an isomorphism M = M* of Dieudonn6 O-modules, which induces
an isomorphism M/(F, V)M ~ M* /(F, V)M* of OF ® k-modules. D

THEOREM 5.4. - The algebraic stack is smooth over Spec k(v)
of pure dimension g - I a 1.

Proof. Let x : be a geometric point. Then there
is an affine open neighborhood U of x and a polarized abelian OF-scheme

E such that and are free

OuQ90F-modules. Let x¡p) and xi be of 

and RI(1TA)*(C’JA)i respectively for each i E Z/f Z. Let

Then locally is defined by the equations fi,j, where (i, j ) E I -
 a’l. Therefore, -
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Let M := 

the Hodge filtration:
1~. We have

By Proposition 4.3 and Lemma 5.3, we can choose a f xi, yi I
be of (M)i for each i E Z/f Z such that yi E Fil’ and F*(xi01) == 
for some ci E For any PD-extension R of k, the differential
forms xi, yi have unique horizontal liftings in iw:= with respect
to the Gauss-Manin connection, which we will denote the liftings by xi, yi
again.

Let R = k[[t]]I(t)’ be the first order universal deformation ring of
where t = Z/f Z, 0  j  e. The first order universal

deformation (A, ~, E) gives rise to

where Fil = FIl = 
o 1) = span(yi o 1), Q - span([xi]), and Q(p) == span([xi 0 1]) for all

i E Z/ fZ. Here the bracket [ ] denotes the class modulo Fil and FiICP). It
follows from

that is the first order deformation ring of at x and the

tangent space has dimension g - I q I - dimx The assertion follows. E)

COROLLARY 5.5. - The ordinary points are dense in JIiIDP 0 Fp.

Proof. Note that for ordinary points ai - 0,Vi e Z/f Z. The
statement follows from Theorem 5.4 and the density of the Rapoport locus.

a
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5.6. Let denote the subset of that consists of points with a-
type a. It is a locally closed subset of M, hence regarded as a locally closed
algebraic substack of A4 with the reduced induced structure. Lemma 5.3
says that (A, A, t) C if and only if a(A) &#x3E; a. It follows from

Theorem 5.4 that Ma is a dense open substack of and is the

scheme-theoretic closure of Ma in M. This justifies our notation.

6. Deformations of Dieudonn6 modules.

6.1. We follow the convenient setting of [N, Sect. 0] and [CN, Sect. 2,
p. 1011]. As we will only deal with smooth functors, the deformation theory
developed by P. Norman [N] and Norman-Oort [NO] is enough for our
purpose. We refer the reader to Zink [Z2] for the generalized theory of
displays over more general base ring.

Let R be a commutative ring of characteristic p. Let W(R) denote
the ring of Witt vectors over R, equipped with the Verschiebung T and
Frobenius a:

Let Cartp(R) denote the Cartier ring modulo the relations

. FV=pand 

~ Fa = aaF and VaT == aV, V a E W(R).
A left Cartp(R)-module is unif orm if it is complete and separated

in the V-adic topology. A uniform Cartp(R)-module M is reduced if V is
injective on M and is a free R-module. A Dieudonne module over R

is a finitely generated reduced uniform Cartp(R)-module.
There is an equivalence of categories between the category of finite di-

mensional commutative formal group over R and the category of Dieudonn6
module over R. We denote this functor by D*. The tangent space of a for-
mal group G is canonically isomorphic to 

6.2. Let a = (a2) be an a-type and (Ao, Ao, Lo) e (1.12)
(5.2) be a non-ordinary polarized abelian OF-variety. By Lemma 3.1, the
associated p-divisible group Go = Ao [p-] is connected, hence it is a smooth
formal group. As the forgetful functor Def ~Ao, Ao, to] ~ Def ~Ao, to] induces
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an equivalence of deformation functors, we will consider deformations of
abelian OF-varieties and their associated formal groups.

Let C  e - 1 } and let R :=
We have

Set wk W (R) ~T~ / (~i (P(T ) ) ) and denote again by 7r the image of T in
WzR.

Let Mo be the covariant Dieudonn6 module of Ao. Let b = (bi ) be
the a-type of Ao and T be the a-index of Mo. By Proposition 4.4, we can
choose a Wz-basis of Mo for each i E Z/f Z such that

for some ci C 

By [NO, Lemma 0.2], we construct a Dieudonn6 module MR over R
with a Cartp(R)-linear action by 0 as follows. It is the Cartp(R)-module
generated by with the relations

where Ti,j is the Teichmfller lift of ti,j, V (i, j) E I, and u = We

impose the natural Wk-module structure on the free W(R)-submodule gen-
erated by and impose the trivial WR-module structure
on this submodule i. The action of 0 on MR comes from the natural

embedding O - C~ W(R).

LEMMA 6.3. - The Dieudonné 0-module MR over R is isomorphic
to the universal deformation of Mo for 
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Proof. - It is clear that Cartp(k)0cartp(R)MR = Mo~ On 
we have

By the Serre-Tate theorem, we obtain a morphism Spf R -&#x3E; By:?" a

[N, Thm. 1], this construction induces an injection of tangent spaces. By
Theorem 5.4, is smooth and dim A4 = dim R. Hence the morphism
is an isomorphism. 0

Remark 6.4. - Another construction of MR is using tensor products
modulo relations. Let PR is a free 00zp W(R)-module of rank two, with
a WR-basis f Xi, for each component Ph. Then we construct MR to be
the quotient of Cartp(R) 0W(R) PR modulo the relations (6.2.2) and (6.2.3).

6.5. Let MR be as in (6.2). Let

Then we have

where

LEMMA 6.6. - The non-ordinary locus is defined by TIiET ti,o
= 0.

Proof. - Take a = (0, 0, ... , 0). On MR/(V MR -f- 1T MR), we have

As each slope stratum is reduced, it induces a closed reduced subscheme, if
not empty, of A point p e Spec R is in the non-ordinary locus if and

only if any of T, vanishes on R/.p. Therefore the defining equation
m
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6.7. We continue with (6.5). Let t = lq(Mo/,7rMo) I and T =

in,, n2, ... We assume that 0  n,  n2 ...  nt  f and let
no := nt - f and nt+l - nl. Let fi := ni - ni-i for I  i x t (4.7).

From (6.5), we have

where

and

Recall that we write T (n) for Tan (3.3) (4.7). For suppose that

for some coefficients 6s in W;;t. It follows from the same compu-
tation (4.7.1 ) of (4.7) that

where

and
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Therefore,

THEOREM 6.8. - If a = (ai) is spaced, then the points in with

slope sequence s(lgl) are dense in 

Proof. We will show that for each point x = (Ao, Ao, to) E 
there is a deformation in whose generic point has slope sequence s ( ) a ] ) .
Let Mo be the Dieudonn6 module of Ao. Let R = T(Mo). We
construct a deformation MR by (6.2) with Ti,j = 0 except for i c T(Mo)
and j = ai . Note that YZ = 0 in (6.7.4). We have (cf. 4.9)

where UZ - (c,,, + Tn2,an2 )Oi+1+.e2+2+...+.et) for some cn2 in Wni. We may
assume that e(fi - 1 ) &#x3E; ani for some i, otherwise lgl - 2 and there is
nothing to prove. Assume that e(fI -1) &#x3E; we have

where P is a nonzero polynomial in Ui’s. Hence P is a unit in 
where K is the perfection of F’rac(R) . Therefore MK = Q9Cartp(R)
MR has slope sequence D

COROLLARY 6.9. - The generic point of each irreducible compo-
nent has slope sequence &#x3E; s(A(q)), where A(a) := 
a, b is spaced}.

Proof. This follows from Proposition 4.9 and Grothendieck’s spe-
cialization theorem. D

PROPOSITION 6.10. Let a = (ai) be an a-type [e/2] for
all i E Let x = M (k) such that Ao is superspecial.
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Then in every open neighborhood of x in there exists a point of slope
sequence 

Proof. Let c := [e/2] and Mo be the Dieudonn6 module of Ao. By
Lemma 4.5 (2), we can choose a basis for Mi such that

Let R = We construct a deformation MR of Mo by (6.2):

where Ti is the Teichmfller lift of ti. We have (cf. 4.9, 6.10)

where Ui = We may assume that ai  e/2 for some i, otherwise
lal = 2 and there is nothing to prove. Say ao  e/2, we have

where P is a nonzero polynomial in Ui’s. Hence P is a unit in 
where K is the perfection of Frac(R). Therefore MK = Cartp (K) 0Cartp(R)
MR has slope sequence D

Remark 6.11. Goren and Oort showed [GO, Thm. 5.4.11~ that
when p is inert in F, the inequality &#x3E; in Corollary 6.9 can be strengthened
by equality =. However, the equality does not hold in general by Propo-
sition 6.10. It will be interesting to have the sharp formula of the slope
sequence of the generic points of any alpha stratum. When the a-types are

spaced, the equality can be achieved as it stands in Theorem 6.8.

6.12. Let x = (Ao, Ao, to) and Mo be as in (6.2). Suppose that the
reduced a-number t :== ITI of x is one, where T is the a-index of Mo. We
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assume that T = ~0~ for simplicity. By Proposition 4.4, we choose a basis
for Mo as in (6.2.1) of (6.2).

Let £ = ord7T (co). We have ao = min{e,l} and slope(Mo) =
s (min f 2 , t 1) by (4.10).

Take a = (0, 0, ... 0) and construct the universal deformation MR of
Mo for by (6.2). It is the Dieudonn6 module of the formal group attached
to the universal formal deformation (A, A, 7) over A~~ = Spf R. For each
m E S(g), let denote the reduced closed subscheme (in

consisting of points with slope sequence &#x3E; s(m) (1.12). We will find
the defining equations of the subscheme and show that the generic
point has slope sequence 

From (6.7.4), we have

where

and

Therefore we have the Cayley-Hamilton equation 
1T9 = 0. The subscheme is defined by the equations obtained from

From (6.5.1) of (6.5), write

where Tk T 2 , t = for k = ei + j, e - 1. We can see that

the defining equations for are to = ti - ... - 0. Let Km be
the perfection of the generic residue field of The element Tm is a
unit in therefore the generic point of has slope sequence
s(m).
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THEOREM 6.13. - Let x : geometric point of
reduced a-number one. Then each closed subscheme for m E

S(g), s(m) - slope(x) (3.2), is formally smooth of codimension fml and
its generic point has slope sequence s(m), where denotes the smallest

integer not less than m.

COROLLARY 6.14. - Let U be the subset consisting of points
with reduced a-number  1. Then the strong Grothendieck conjecture holds
for U (1.13) .

COROLLARY 6.15. - The strong Grothendieck conjecture for M holds
when p is totally ramified in F (1.13).

COROLLARY 6.16. - The weak Grothendieck conjecture for M holds

(1.13).
Proof. - It follows from Lemma 7.2 that there is a supersingular

point of reduced a-number one. Then the assertion follows from Theo-
rem 6.13. D

6.17. In the rest of this section we assume that p is totally ramified
in F. Denote by the reduction 0z k(v) of modulo v. Let

x = be a geometric point and let e(Ao) = 
and a(Ao) _ We assume that e2 and ai x a2. Let Mo be the
covariant Dieudonn6 module of Ao. We can choose two W[,7r] = 00W-bases

X2~, IY,, Y21 of Mo such that

and

where pu = 7r’. We have

and

Write YI = aX 1 + /3X2 and Y2 = + JX2. Then we have

and

It follows that ei and a2 = el + As e2 &#x3E; 2 , by
the argument in (4.11) we have slope(Ao) = s(i), where i = +
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Note that the a-type a(Ao) determines the invariant e (Ao ) and
slope(Ao): el = a, and slope(Ao) = 

6.18. In [DP], Deligne and Pappas have defined a closed algebraic
substack Ni of A4DP which classifies the objects of Lie type e2l with
ei &#x3E; i. They have shown that the complement of Ni+1 in iVi is a smooth
algebraic stack of dimension e - 2i if it is non-empty. It follows from their
results and Theorem 7.4 that points of Lie type e2l are dense in Nel’
It follows from (6.17) that any point in Nel has slope sequence &#x3E; s(el ) .
The following lemma confirms the density of points with slope sequence
s(el) in.A/e,.

LEMMA 6.19. If a2 &#x3E; a1, then there is a deformation (~4, A, 7) over
k~t] of (Ao, whose generic point has a-type (a1, a2 - 1 ) .

Proof. As the forgetful map Def ~Ao, to] - Def ~Ao, to] induces
an equivalence of deformation functors in we will construct a defor-

mation of abelian OF-varieties in JUeI. By the reduction step in [DP, 4.3]
and the construction of (6.2), we can construct a Dieudonn6 O-module MR
over R : = of Mo such that

where T is the Teichmfller lift of t. Note that j3 is a unit in 

0 mod 7r, then a is a unit and a2 = a,. By base change to
K:= k( (t) ) perf, we have

thus a(MK) - (a1, a2 - 1 ) . This completes the proof. D

THEOREM 6.20. - The strong Grothendieck conjecture for M DP
holds when p is totally ramified in F.

Proof. Let x E be a geometric point with a-type (aI,a2)
and slope sequence ~(~), where i = It suffices to deform the

point x to a point with slope sequence s (i - 1 ) . If a2 &#x3E; a,, then by
Lemma 6.19 we can deform to a point with slope sequence ~(z 2013 1). Suppose
that a2 = a, = el, we have slope(x) = s(el). By (6.18), we can deform to
a point of Lie type 1, e2 -~-1~. As points with slope sequence s(el - 1)
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are dense in we can further deform to a point with slope sequence
s(el - 1). F-I

COROLLARY 6.21. - Each Newton stratum of )k4DP with slope se-
quence s(m), m E S (g) (3.2), has pure dimension g - fml when p is totally
ramified in F.

Proof. - This follows from the purity of Newton strata [dJO] and
Theorem 6.20. D

Remark 6.22. - In [C] Chai gives a group-theoretic dimension for-
mula for Newton strata arising from quasi-split groups. He expects that it
is so for good reduction of PEL-type Shimura varieties [C, Question 7.6,
p. 984]. Corollary 6.21 suggests that his description can be applied for a
larger class, not necessarily restricted to the good reduction case.

7. An algebraization theorem.

7.1. Let notations be as in (1.1) and (1.12). The set of possible
Newton polygons in question is parameterized by x ... x ( 1.11 ) ,
where g2 - [F,, : Qp]. For each abelian OF-variety A, the associated p-
divisible group A(p) : has a decomposition A(p) = E9 ... E9

A(p)vs .
Recall (1.5) that a quasi-polarized p-divisible (9-group (H, A, L) over k

is algebraizable if it is attached to a polarized abelian OF-variety (A, AA, LA)
over k.

LEMMA 7.2. - Any supersingular quasi-polarized p-divisible 0-group
(H, A, .) over k is algebraizable.

Proof. Let E be a supersingular elliptic curve over k, and A’ : -
E 0 OF. It is clear that A’ satisfies the Rapoport condition. By [R,
Prop. 1.10], there exists a separable OF-linear polarization A’ on A’. Let
(HI,ÀI,LI) be the p-divisible group attached to (A’, A’, c’). It follows from
Corollary 3.7 that is isogenous to (H, A, L). By a theorem of
Tate, there is a polarized abelian OF-variety (A, AA, LA) whose p-divisible
group is isomorphic to (H, A, ~) . D

THEOREM 7.3. - (1) The weak Grothendieck conjecture for holds.

(2) The strong Grothendieck conjecture for holds when all

residue degrees fi are one.
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Proof. - (1) It follows from Lemma 7.2 that there is a supersingular
polarized abelian OF-variety A such that each component A(p),, of the
associated p-divisible group A(p) has reduced a-number one. Then the
assertion follows from the theorem of Serre-Tate and Theorem 6.13.

(2) This follows from the theorem of Serre-Tate and Theorem 6.20. D

THEOREM 7.4. - Any quasi-polarized p-divisible 0-group (H, À, t)
over k is algebraizable.

Proof. - It follows from Theorem 7.3 (1) that any slope sequence in
x ... x S (gs ) can be realized by a point in M. Then the theorem

follows from Corollary 3.7. D

8. An example.

In this section we construct a separably polarized abelian OF-scheme
A over a complete DVR R whose close fibre Ak does not satisfy the
Rapoport condition.

Let g - 2 and p &#x3E; 3 be a ramified prime in the totally quadratic
real field F. We have OF o W(k) = W ( 1~ ) ~~r~ , -7r 2 - p. Let M be a free
W(k) [1T]-module generated by el, e2 with the Verschiebung action

and with the alternating form determined by

and other pairing are 0 for the W-basis ei , e~, e 2 , e~, where e~ - :=

1Te2. By the algebraization theorem, there is a polarized abelian OF-variety
Ao over k with the prescribed Dieudonn6 module M.

We have the Hodge filtration of

Clearly, Ao does not satisfy the Rapoport condition, as 7r = 0 on M/ VM.
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Let R := By Grothendieck-Messing’s theory, Serre-Tate’s
Theorem and Grothendieck’s Existence Theorem, we can lift the abelian
variety Ao with the additional structure over R by lifting the Hodge
filtration with respect to the addition structure, see [Y2, Sect. 4]. Let N
be the R-submodule of M 0w R generated by e’ + ý’PeI and e2 - Vp-e2-
It is easy to check that N is stable by OF-action, N 0 R k = YM/pM and
(N, N) = 0. Thus, we get a desired polarized abelian OF-scheme over R.

9. A computation of the Hecke correspondence.

9.1. Let Mo be the quasi-polarized Dieudonn6 (9-module of the
polarized abelian variety Ao in the previous section. Let N be the quasi-
polarized Dieudonn6 module containing Mo with V N = M and {,) N -
(,). We havep

and (el, e2) = 1, (ei, e2) = 1. From N - -1 FM, we havep

Write we have

and = = 1. Denote by N the quotient of N modulo
pN and Mo the image of Mo in N. Write xi, r§ the image of Xi, X: in N.

9.2. Let x be space of 1T-invariant maximal isotropic "Dieudonne"

subspaces of N over k:
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We regard X as a reduced subscheme over l~. It is a closed subscheme of

the Lagrangian Grassmanian LG(2, 4), hence a projective variety.
There is a finite morphism pr : X - (cf. [Yl, Sect. 6]) sending

Mo - (Ao, Ào, and the morphism pr factors through the supersingular
locus SDP of 

We have Mo = XI,X2 Let Mt E x be the k-subspace of
N generated by

The points Mt form a Zariski open neighborhood of Mo in X , which we
denote by U. We will show that 

9.3. From (Mt, Mt) N = 0, we get t11 + t22 == 0. From X§ = 1/p e -
Ie. = ~ Xi, we have

One computes

and concludes from 1TXI E Mt that

and I

Similarly from 1TX2 E Mt, one gets

and

For the stability of Mt by F and V, one computes

and obtains
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Similarly from Fx2 E Mt, one obtains

Applying YMt C Mt, one does not get new equations but (9.3.3)-
(9.3.6). From (9.3.4), one has tl2 = atll,ap+l - 1. From (9.3.5), one
has t21 = (3t22 = -(3tII,(3p+I = 1. From (9.3.1), one has 1 = a(3. These
parameters satisfy the equations (9.3.3) and (9.3.6).

We computed that
= 1}, hence U -- + t2t3). Compared with
a result of [BG, p. 476, 3], the morphism pr maps x onto the (p + 1)
irreducible components of SDP containing 

PROPOSITION 9.4. - Let U be as above. There is a Zariski open

neighborhood V of 0 in U such that pr : V - SDP is an 6tale neighborhood
at (Ao,Ào,to).

Proof. Choose a finite 6tale cover A4DP by adding
a prime-to-p level structure with n &#x3E; 3. Choose a lift 

of (Ao, Ào, to). Then there is a lift pr : which sends Mo
to The morphism pr becomes a closed immersion as the
automorphisms of the objects are trivial. It again factors through the
supersingular locus As x and SDP are reduced schemes, X is

isomorphic to its image. The image is the union of the p -~ 1 irreducible
components of SDP containing (Ao, Then there is a Zariski open

such that the V is an 6tale neighborhood of SDP at (Ao, Ao, Lo) . 0
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