To a given analytic function germ , we associate zeta functions , , defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence classes of Brieskorn polynomials of two variables. Except special series of singularities our method classifies as well the blow-analytic equivalence classes of Brieskorn polynomials of three variables.
Soit un germe de fonction analytique. On associe à des fonctions zêta , définies de manière similaire aux fonctions zêta motiviques de Denef et Loeser. On montre que ces fonctions sont rationnelles et ne dépendent que de la classe d’équivalence blow-analytique au sens de Kuo de . En utilisant ces fonctions zêta et l’invariant de Fukui on donne une classification des polynômes de Brieskorn de deux variables à équivalence blow-analytique près. Pour les polynômes de Brieskorn de trois variables on obtient une classification presque complète.
Keywords: blow-analytic equivalence, motivic integration, zeta functions, Thom-Sebastiani formulae
Mot clés : équivalence blow-analytique, intégration motivique, fonctions zêta, formules de Thom-Sebastiani
Koike, Satoshi 1; Parusiński, Adam 2
@article{AIF_2003__53_7_2061_0, author = {Koike, Satoshi and Parusi\'nski, Adam}, title = {Motivic-type invariants of blow-analytic equivalence}, journal = {Annales de l'Institut Fourier}, pages = {2061--2104}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.2001}, zbl = {1062.14006}, mrnumber = {2044168}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2001/} }
TY - JOUR AU - Koike, Satoshi AU - Parusiński, Adam TI - Motivic-type invariants of blow-analytic equivalence JO - Annales de l'Institut Fourier PY - 2003 SP - 2061 EP - 2104 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2001/ DO - 10.5802/aif.2001 LA - en ID - AIF_2003__53_7_2061_0 ER -
%0 Journal Article %A Koike, Satoshi %A Parusiński, Adam %T Motivic-type invariants of blow-analytic equivalence %J Annales de l'Institut Fourier %D 2003 %P 2061-2104 %V 53 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2001/ %R 10.5802/aif.2001 %G en %F AIF_2003__53_7_2061_0
Koike, Satoshi; Parusiński, Adam. Motivic-type invariants of blow-analytic equivalence. Annales de l'Institut Fourier, Volume 53 (2003) no. 7, pp. 2061-2104. doi : 10.5802/aif.2001. https://aif.centre-mersenne.org/articles/10.5802/aif.2001/
[1] Polyèdre de Newton et trivialité en famille, J. Math. Soc. Japan, Volume 54 (2002), pp. 513-550 | DOI | MR | Zbl
[2] Arc-analytic functions, Invent. Math., Volume 101 (1990), pp. 411-424 | DOI | MR | Zbl
[3] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997), pp. 207-302 | DOI | MR | Zbl
[4] Topological triviality of deformations of functions and Newton filtrations, Invent. Math., Volume 72 (1983), pp. 335-358 | DOI | MR | Zbl
[5] Motivic Igusa zeta functions, J. Alg. Geom., Volume 7 (1998), pp. 505-537 | MR | Zbl
[6] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232 | DOI | MR | Zbl
[7] Motivic exponential integrals and a motivic Thom-Sebastiani Theorem, Duke Math. J., Volume 99 (1999), pp. 289-309 | MR | Zbl
[8] Geometry of arc spaces of algebraic varieties, European Congress of Math. (Barcelona, July 10-14, 2000), Volume Vol. 1 (2001), pp. 327-348 | Zbl
[9] Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology, Volume 41 (2002), pp. 1031-1040 | DOI | MR | Zbl
[10] The modified analytic trivialization of family of real analytic functions, Invent. Math., Volume 82 (1985), pp. 467-477 | DOI | MR | Zbl
[11] Seeking invariants for blow-analytic equivalence, Comp. Math., Volume 105 (1997), pp. 95-107 | DOI | MR | Zbl
[12] Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities (Pitman Research Notes in Math. Series), Volume 381 (1998), pp. 8-29 | Zbl
[13] Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan, Volume 52 (2000), pp. 433-446 | DOI | MR | Zbl
[14] Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Comp. Math., Volume 136 (2003), pp. 217-235 | DOI | MR | Zbl
[15] Invariants of bi-Lipschitz equivalence of real analytic functions Banach Center Publications (to appear) | MR | Zbl
[16] Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math., Volume 79 (1964), pp. 109-302 | DOI | MR | Zbl
[17] Computations and Stability of the Fukui Invariant, Comp. Math., Volume 130 (2002), pp. 49-73 | DOI | MR | Zbl
[18]
(1995) (Lecture at Orsay, December 7)[19] Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc., Volume 96 (1986), pp. 163-166 | DOI | MR | Zbl
[20] -equivalence of functions near isolated critical points, Symp. Infinite Dimensional Topology, Baton Rouge, 1967 (Annales of Math. Studies), Volume 69 (1972), pp. 199-218 | Zbl
[21] On -sufficiency of jets of potential functions, Topology, Volume 8 (1969), pp. 167-171 | DOI | MR | Zbl
[22] The modified analytic trivialization of singularities, J. Math. Soc. Japan, Volume 32 (1980), pp. 605-614 | DOI | MR | Zbl
[23] On classification of real singularities, Invent. Math., Volume 82 (1985), pp. 257-262 | DOI | MR | Zbl
[24] Ensembles semi-algébriques symétriques par arcs, Math. Ann., Volume 282 (1988), pp. 445-462 | DOI | MR | Zbl
[25] Injective endomorphisms of real algebraic sets are surjective, Math. Ann., Volume 282 (1998), pp. 1-14 | MR | Zbl
[26] Topologie des singularités des hypersurfaces complexes, Singularités à Cargèse (Astérisque), Volume 7 \& 8 (1973), pp. 171-182 | Zbl
[27] Ensembles semi-analytiques, I.H.E.S., 1965
[28] Motivic Measures, Séminaire Bourbaki, exposé 874, mars 2000 | Numdam | Zbl
[29] Complex monodromy and the topology of real algebraic sets, Comp. Math., Volume 106 (1997), pp. 211-233 | DOI | MR | Zbl
[30] Isolated singularities defined by weighted homogeneous polynomials, Topology, Volume 9 (1970), pp. 385-393 | DOI | MR | Zbl
[31] Topological invariance of weights for weighted homogeneous singularities, Kodai Math. J., Volume 9 (1986), pp. 188-190 | DOI | MR | Zbl
[32] Espace des germes d'arcs réels et série de Poincaré d'un ensemble semi-algébrique, Ann. Inst. Fourier, Volume 51 (2001) no. 1, pp. 43-67 | DOI | Numdam | MR | Zbl
[33] Topological invariance of weights for weighted homogeneous isolated singularities in , Proc. Amer. Math. Soc., Volume 103 (1988), pp. 995-999 | MR | Zbl
[34] Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse (Astérisque), Volume 7 \& 8 (1973), pp. 285-362 | Zbl
[35] The topological zeta function associated to a function on a normal surface germ, Topology, Volume 38 (1999), pp. 439-456 | DOI | MR | Zbl
[36] Topological types and multiplicity of isolated quasihomogeneous surface singularities, Bull. Amer. Math. Soc., Volume 19 (1988), pp. 447-454 | DOI | MR | Zbl
[37] Topological types of quasihomogeneous singularities in , Topology, Volume 18 (1979), pp. 113-116 | DOI | MR | Zbl
Cited by Sources: