Maximal Hamiltonian tori for polygon spaces
Annales de l'Institut Fourier, Volume 53 (2003) no. 6, pp. 1925-1939.

We study the poset of Hamiltonian tori for polygon spaces. We determine some maximal elements and give examples where maximal Hamiltonian tori are not all of the same dimension.

On étudie l'ensemble partiellement ordonné des tores hamiltoniens pour les espaces de polygones. Un certain nombre d'éléments maximaux sont dégagés et l'on donne des exemples où les tores maximaux n'ont pas tous la même dimension.

DOI: 10.5802/aif.1996
Classification: 53D20, 57S25
Keywords: polygon spaces, symplectic geometry, Hamiltonian torus actions
Mot clés : espaces de polygones, géométrie symplectique, actions hamiltoniennes de tores

Hausmann, Jean-Claude 1; Tolman, Susan 2

1 Université de Genève, Section de Mathématiques, B.P. 240, CH-1211 Genève 24
2 University of Illinois at Urbana-Champaign, Department of Mathematics, Urbana, IL 61801 (USA)
@article{AIF_2003__53_6_1925_0,
     author = {Hausmann, Jean-Claude and Tolman, Susan},
     title = {Maximal {Hamiltonian} tori for polygon spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1925--1939},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {6},
     year = {2003},
     doi = {10.5802/aif.1996},
     zbl = {1049.53056},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1996/}
}
TY  - JOUR
AU  - Hausmann, Jean-Claude
AU  - Tolman, Susan
TI  - Maximal Hamiltonian tori for polygon spaces
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 1925
EP  - 1939
VL  - 53
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1996/
DO  - 10.5802/aif.1996
LA  - en
ID  - AIF_2003__53_6_1925_0
ER  - 
%0 Journal Article
%A Hausmann, Jean-Claude
%A Tolman, Susan
%T Maximal Hamiltonian tori for polygon spaces
%J Annales de l'Institut Fourier
%D 2003
%P 1925-1939
%V 53
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1996/
%R 10.5802/aif.1996
%G en
%F AIF_2003__53_6_1925_0
Hausmann, Jean-Claude; Tolman, Susan. Maximal Hamiltonian tori for polygon spaces. Annales de l'Institut Fourier, Volume 53 (2003) no. 6, pp. 1925-1939. doi : 10.5802/aif.1996. https://aif.centre-mersenne.org/articles/10.5802/aif.1996/

[Au] M. Audin The topology of torus actions on symplectic manifolds, Birkhäuser, 1991 | MR | Zbl

[BW] W.M. Boothby; H.C. Wang On contact manifolds, Ann. of Math. (2), Volume 68 (1958), pp. 721-734 | DOI | MR | Zbl

[De] T. Delzant Hamiltoniens périodiques et image convexe de l'application moment, Bull. Soc. Math. France, Volume 116 (1988), pp. 315-339 | Numdam | MR | Zbl

[Ha] J-C. Hausmann Sur la topologie des bras articulés, Algebraic Topology, Poznan (Springer Lectures Notes), Volume 1474 (1989), pp. 146-159 | Zbl

[HK1] J-C. Hausmann; A. Knutson The cohomology ring of polygon spaces. Grasmannians, Annales de l'Institut Fourier, Volume 48 (1998) no. 1, pp. 281-321 | DOI | Numdam | MR | Zbl

[HK2] J-C. Hausmann; A. Knutson A limit of toric symplectic forms that has no periodic Hamiltonians, GAFA, Geom. Funct. Anal, Volume 10 (2000), pp. 556-562 | DOI | MR | Zbl

[Ka] Y. Karshon Maximal tori in the symplectomorphism groups of Hirzebruch surfaces, Math. Res. Lett, Volume 10 (2003) no. 1, pp. 125-132 | MR | Zbl

[Kl] A. Klyachko Spatial polygons and stable configurations of points in the projective line, Algebraic geometry and its applications (Yaroslav/\cprime, 1992) (Aspects Math.) (1992), pp. 67-84 | Zbl

[KM] M. Kapovich; J. Millson The symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, Volume 44 (1996), pp. 479-513 | MR | Zbl

[Le] E. Lerman On maximal tori in the contactomorphism groups of regular contact manifolds (2002) (e-print, math.SG/0212043)

Cited by Sources: