The geometry of null systems, Jordan algebras and von Staudt's theorem
[La géométrie des polarités nulles, algèbres de Jordan et le théorème de von Staudt]
Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 193-225.

Nous caractérisons une classe importante de géométries projectives généralisées (X,X ' ) par les propriétés équivalentes suivantes : (1) (X,X ' ) admet une polarité nulle centrale; (2) (X,X ' ) admet une polarité intérieure; (3) (X,X ' ) est associée à une algèbre de Jordan avec élément neutre. Dans ce cadre, nous démontrons un analogue du théorème de von Staudt qui généralise des résultats similaires de L.K. Hua.

We characterize an important class of generalized projective geometries (X,X ' ) by the following essentially equivalent properties: (1) (X,X ' ) admits a central null-system; (2) (X,X ' ) admits inner polarities: (3) (X,X ' ) is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s theorem which generalizes similar results by L.K. Hua.

DOI : 10.5802/aif.1942
Classification : 17C37, 51A05, 51A50, 51N25, 53C35
Keywords: null-system, projective geometry, polar geometry, symmetric space, Jordan algebra
Mot clés : polarité nulle, géométrie projective, géométrie polaire, espace symétriques, algèbre de Jordan

Bertram, Wolfgang 1

1 Université Nancy I, Institut Élie Cartan, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)
@article{AIF_2003__53_1_193_0,
     author = {Bertram, Wolfgang},
     title = {The geometry of null systems, {Jordan} algebras and von {Staudt's} theorem},
     journal = {Annales de l'Institut Fourier},
     pages = {193--225},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {1},
     year = {2003},
     doi = {10.5802/aif.1942},
     zbl = {1038.17023},
     mrnumber = {1973071},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1942/}
}
TY  - JOUR
AU  - Bertram, Wolfgang
TI  - The geometry of null systems, Jordan algebras and von Staudt's theorem
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 193
EP  - 225
VL  - 53
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1942/
DO  - 10.5802/aif.1942
LA  - en
ID  - AIF_2003__53_1_193_0
ER  - 
%0 Journal Article
%A Bertram, Wolfgang
%T The geometry of null systems, Jordan algebras and von Staudt's theorem
%J Annales de l'Institut Fourier
%D 2003
%P 193-225
%V 53
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1942/
%R 10.5802/aif.1942
%G en
%F AIF_2003__53_1_193_0
Bertram, Wolfgang. The geometry of null systems, Jordan algebras and von Staudt's theorem. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 193-225. doi : 10.5802/aif.1942. https://aif.centre-mersenne.org/articles/10.5802/aif.1942/

[Ar66] E. Artin Geometric Algebra, Interscience, New York, 1966 | MR | Zbl

[B94] M. Berger Geometry, 2 volumes, Springer-Verlag, Berlin, 1994 | MR | Zbl

[Be00] W. Bertram The geometry of Jordan and Lie structures, Lecture Notes in Mathematics, 1754, Springer, Berlin, 2000 | MR | Zbl

[Be01a] W. Bertram From linear algebra via affine algebra to projective algebra (2001) (preprint, Nancy) | MR | Zbl

[Be01b] W. Bertram Generalized projective geometries: general theory and equivalence with Jordan structures (2001) preprint, Nancy (to appear in Advances in Geometry) | MR | Zbl

[BK65] H. Braun; M. Koecher Jordan-Algebren, Springer-Verlag, Berlin, 1965 | MR | Zbl

[Br68] H. Braun Doppelverhältnisse in Jordan-Algebren, Abh. Math. Sem. Hamburg, Volume 32 (1968), pp. 25-51 | DOI | MR | Zbl

[Ch49] W.L. Chow On the geometry of algebraic homogeneous spaces, Ann. Math, Volume 50 (1949) no. 1, pp. 32-67 | DOI | MR | Zbl

[FK94] J. Faraut.; A. Koranyi Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994 | MR | Zbl

[Hua45] L.-K. Hua Geometries of Matrices. I. Generalizations of von Staudt's theorem, Trans. A.M.S, Volume 57 (1945), pp. 441-481 | MR | Zbl

[JNW34] P. Jordan J. von Neumann; E. Wigner On an algebraic generalization of the quantum mechanical formalism, Ann. Math, Volume 35 (1934), pp. 29-64 | DOI | JFM | MR | Zbl

[Koe69] M. Koecher Gruppen und Lie-Algebren von rationalen Funktionen, Math. Z, Volume 109 (1969), pp. 349-392 | DOI | MR | Zbl

[Lo69] O. Loos Symmetric Spaces I, Benjamin, New York, 1969 | Zbl

[Lo75] O. Loos Jordan Pairs, LN, 460, Springer, New York, 1975 | MR | Zbl

[Lo95] O. Loos Elementary Groups and Stability for Jordan Pairs, K-Theory, Volume 9 (1995), pp. 77-116 | DOI | MR | Zbl

[Sp73] T.A. Springer Jordan Algebras and Algebraic Groups, Springer Verlag, New York, 1973 | MR | Zbl

Cité par Sources :