[La géométrie des polarités nulles, algèbres de Jordan et le théorème de von Staudt]
We characterize an important class of generalized projective geometries by the following essentially equivalent properties: (1) admits a central null-system; (2) admits inner polarities: (3) is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s theorem which generalizes similar results by L.K. Hua.
Nous caractérisons une classe importante de géométries projectives généralisées par les propriétés équivalentes suivantes : (1) admet une polarité nulle centrale; (2) admet une polarité intérieure; (3) est associée à une algèbre de Jordan avec élément neutre. Dans ce cadre, nous démontrons un analogue du théorème de von Staudt qui généralise des résultats similaires de L.K. Hua.
Keywords: null-system, projective geometry, polar geometry, symmetric space, Jordan algebra
Mots-clés : polarité nulle, géométrie projective, géométrie polaire, espace symétriques, algèbre de Jordan
Bertram, Wolfgang 1
@article{AIF_2003__53_1_193_0,
author = {Bertram, Wolfgang},
title = {The geometry of null systems, {Jordan} algebras and von {Staudt's} theorem},
journal = {Annales de l'Institut Fourier},
pages = {193--225},
year = {2003},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {53},
number = {1},
doi = {10.5802/aif.1942},
zbl = {1038.17023},
mrnumber = {1973071},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1942/}
}
TY - JOUR AU - Bertram, Wolfgang TI - The geometry of null systems, Jordan algebras and von Staudt's theorem JO - Annales de l'Institut Fourier PY - 2003 SP - 193 EP - 225 VL - 53 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1942/ DO - 10.5802/aif.1942 LA - en ID - AIF_2003__53_1_193_0 ER -
%0 Journal Article %A Bertram, Wolfgang %T The geometry of null systems, Jordan algebras and von Staudt's theorem %J Annales de l'Institut Fourier %D 2003 %P 193-225 %V 53 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1942/ %R 10.5802/aif.1942 %G en %F AIF_2003__53_1_193_0
Bertram, Wolfgang. The geometry of null systems, Jordan algebras and von Staudt's theorem. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 193-225. doi: 10.5802/aif.1942
[Ar66] Geometric Algebra, Interscience, New York, 1966 | Zbl | MR
[B94] Geometry, 2 volumes, Springer-Verlag, Berlin, 1994 | Zbl | MR
[Be00] The geometry of Jordan and Lie structures, Lecture Notes in Mathematics, 1754, Springer, Berlin, 2000 | Zbl | MR
[Be01a] From linear algebra via affine algebra to projective algebra (2001) (preprint, Nancy) | Zbl | MR
[Be01b] Generalized projective geometries: general theory and equivalence with Jordan structures (2001) preprint, Nancy (to appear in Advances in Geometry) | Zbl | MR
[BK65] Jordan-Algebren, Springer-Verlag, Berlin, 1965 | Zbl | MR
[Br68] Doppelverhältnisse in Jordan-Algebren, Abh. Math. Sem. Hamburg, Volume 32 (1968), pp. 25-51 | DOI | Zbl | MR
[Ch49] On the geometry of algebraic homogeneous spaces, Ann. Math, Volume 50 (1949) no. 1, pp. 32-67 | DOI | Zbl | MR
[FK94] Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994 | Zbl | MR
[Hua45] Geometries of Matrices. I. Generalizations of von Staudt's theorem, Trans. A.M.S, Volume 57 (1945), pp. 441-481 | Zbl | MR
[JNW34] On an algebraic generalization of the quantum mechanical formalism, Ann. Math, Volume 35 (1934), pp. 29-64 | DOI | Zbl | MR | JFM
[Koe69] Gruppen und Lie-Algebren von rationalen Funktionen, Math. Z, Volume 109 (1969), pp. 349-392 | DOI | Zbl | MR
[Lo69] Symmetric Spaces I, Benjamin, New York, 1969 | Zbl
[Lo75] Jordan Pairs, LN, 460, Springer, New York, 1975 | Zbl | MR
[Lo95] Elementary Groups and Stability for Jordan Pairs, K-Theory, Volume 9 (1995), pp. 77-116 | DOI | Zbl | MR
[Sp73] Jordan Algebras and Algebraic Groups, Springer Verlag, New York, 1973 | Zbl | MR
Cité par Sources :



