Abelian simply transitive affine groups of symplectic type
[Groupes abéliens affines simplement transitifs du type symplectique]
Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1729-1751.

L'ensemble des sous-groupes abéliens simplement transitifs du groupe affine correspond, de façon naturelle, à l'ensemble des solutions réelles d'un système d'équations algébriques. Nous classifions les sous-groupes abéliens simplement transitifs du groupe symplectique affine, en construisant un modèle pour la variété de solutions correspondante. De manière similaire, nous classifions les espaces modèles globaux des variétés kählériennes spéciales, plates, avec forme cubique constante.

The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. \noindent Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.

DOI : 10.5802/aif.1932
Classification : 22E25, 22E45, 53C26
Keywords: affine transformations, flat symplectic connections, special Kähler manifolds
Mot clés : transformations affines, connexions symplectiques plates, variétés de Kähler spéciales

Baues, Oliver 1 ; Cortés, Vicente 2

1 ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich
2 Université de Nancy I, Institut Élie Cartan, BP 239 54506 Vandoeuvre-les-Nancy Cedex (France)
@article{AIF_2002__52_6_1729_0,
     author = {Baues, Oliver and Cort\'es, Vicente},
     title = {Abelian simply transitive affine groups of symplectic type},
     journal = {Annales de l'Institut Fourier},
     pages = {1729--1751},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {6},
     year = {2002},
     doi = {10.5802/aif.1932},
     zbl = {1012.22013},
     mrnumber = {1952529},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1932/}
}
TY  - JOUR
AU  - Baues, Oliver
AU  - Cortés, Vicente
TI  - Abelian simply transitive affine groups of symplectic type
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1729
EP  - 1751
VL  - 52
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1932/
DO  - 10.5802/aif.1932
LA  - en
ID  - AIF_2002__52_6_1729_0
ER  - 
%0 Journal Article
%A Baues, Oliver
%A Cortés, Vicente
%T Abelian simply transitive affine groups of symplectic type
%J Annales de l'Institut Fourier
%D 2002
%P 1729-1751
%V 52
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1932/
%R 10.5802/aif.1932
%G en
%F AIF_2002__52_6_1729_0
Baues, Oliver; Cortés, Vicente. Abelian simply transitive affine groups of symplectic type. Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1729-1751. doi : 10.5802/aif.1932. https://aif.centre-mersenne.org/articles/10.5802/aif.1932/

[A] L. Auslander Simply Transitive Groups of Affine Motions, Amer. J. Math, Volume 99 (1977) no. 4, pp. 809-826 | DOI | MR | Zbl

[ACD] D. V. Alekseevsky; V. Cortés; C. Devchand Special complex manifolds, J. Geom. Phys, Volume 42 (2002), pp. 85-105 | DOI | MR | Zbl

[BC] O. Baues; V. Cortés Realisation of special Kähler manifolds as parabolic spheres, Proc. Amer. Math. Soc, Volume 129 (2001) no. 8, pp. 2403-2407 | DOI | MR | Zbl

[Ca] E. Calabi Improper affine hypersurfaces of convex type and a generalization of a theorem of Jörgens, Michigan Math. J, Volume 5 (1958), pp. 105-126 | DOI | MR | Zbl

[D] B. Dubrovin Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) (Lecture Notes in Math), Volume 1620 (1996), pp. 120-348 | Zbl

[DO] K. Dekimpe; V. Ongenae On the number of abelian left symmetric algebras, Proc. Amer. Math. Soc, Volume 128 (2000) no. 11, pp. 3191-3200 | DOI | MR | Zbl

[F] D. S. Freed Special Kähler manifolds, Commun. Math. Phys, Volume 203 (1999) no. 1, pp. 31-52 | DOI | MR | Zbl

[FGH] D. Fried; W. Goldman; M.W. Hirsch Affine manifolds with nilpotent holonomy, Comment. Math. Helv, Volume 56 (1981) no. 4, pp. 487-523 | DOI | MR | Zbl

[K] S. Kobayashi Transformation groups in differential geometry, Springer-Verlag, 1972 | MR | Zbl

[L] Z. Lu A note on special Kähler manifolds, Math. Ann, Volume 313 (1999) no. 4, pp. 711-713 | DOI | MR | Zbl

[NS] K. Nomizu; T. Sasaki Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[S] D. Segal The structure of complete left-symmetric algebras, Math. Ann, Volume 293 (1992) no. 3, pp. 569-578 | DOI | MR | Zbl

[VLS] L. Vrancken; A. M. Li; U. Simon Affine spheres with constant affine sectional curvature, Math. Z, Volume 206 (1991) no. 4, pp. 651-658 | DOI | MR | Zbl

Cité par Sources :