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1729-

ABELIAN SIMPLY TRANSITIVE AFFINE GROUPS
OF SYMPLECTIC TYPE

by O. BAUES and V. CORTÉS

1. Introduction.

Affine groups acting simply transitively on real affine space have been
much studied in the literature. (See e.g. the seminal paper [A], or [S] for a
different point of view.) In this paper we study the case of Abelian groups
which act by symplectic transformations. Our interest is to describe the

properties of the algebraic variety of simply transitive Abelian affne groups
of symplectic type. By doing so, we solve the classification problem for
these groups up to a linear action on a well understood algebraic space.
To put this into perspective we mention that in general Abelian simply
transitive groups of affine motions are classified only in low dimensions.

(See [DO] for some recent contribution to this problem.) On the other
hand, it is well known that the group of translations is the only simply
transitive Abelian group with the property that its linear part preserves
a nondegenerate symmetric bilinear form. We mention further that (as
follows for example from [FGH, Theorem 6.11, 7.1~ ) the classification

This work was supported by FIM (ETH Zurich) and MPI fur Mathematik (Bonn).
Keywords: Affine transformations - Flat symplectic connections - Special Kahler mani-
folds.
Math. classification: 22E25 - 22E45 - 53C26.
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of Abelian simply transitive affine groups of symplectic type essentially
implies the classification of flat affine tori with a parallel symplectic form
up to symplectic affine diffeomorphisms.

Our particular motivation to consider Abelian simply transitive sym-
plectic affine groups stems from special Kahler geometry. Special Kahler
geometry is a particular type of geometry which arises in certain super-
symmetric field theories, see e.g. [F] and the literature cited therein. A
special Kahler manifold is a (pseudo-) Kahler manifold (M, g) which has
as additional geometric datum a torsionfree flat connection V which sat-
isfies certain compatibility conditions with respect to g. A special Kahler
manifold is called flat if the Levi-Civita connection D of the special Kahler
metric g is flat. In this paper, we are concerned with the existence and

construction of flat special Kahler manifolds.

Clearly, if a Kahler manifold is flat, it is locally modelled on the
vector space C’ endowed with a Hermitian inner product, and therefore it
is locally trivial as a Kahler manifold. We say that a special Kahler manifold
is locally trivial if as a special Kahler manifold it is locally equivalent to
a Hermitian vector space. This is the case precisely if V = D. It may

seem, at first sight, a bit surprising that there do exist flat special Kahler
manifolds which are not locally trivial as special Kahler manifolds. In fact,
we show that if the special Kahler metric is definite, then flatness implies
local triviality. In particular, any simply connected and complete flat special
Kahler manifold with a positive definite metric is equivalent to a positive
definite Hermitian vector space.

It is well known that special Kahler manifolds arise locally from holo-
morphic potentials. As it turns out, flat special Kahler manifolds corre-
spond to those holomorphic potentials which satisfy a specific algebraic
constraint on their third derivatives. (A priori, flatness is a constraint on
the fourth order jet of the potential.) We may interpret this constraint as
an associativity condition on an associated bilinear product on the tan-
gent spaces of a special Kahler manifold. This shows, by the way, a close
structural similarity between flat special Kahler manifolds and Frobenius
manifolds. In the non-definite case, the algebraic constraint on cubic ten-
sors admits a non-trivial variety of solutions which we describe as certain
bundles over Grassmannians. This enables us to locally classify flat special
Kahler manifolds with constant cubic form. In particular, the points of the
above solution variety correspond to the complete simply connected global
models of such manifolds. These spaces are complete with respect to both
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the metric connection D, and the affine connection V. All of them arise
from certain Abelian simply transitive affine groups of symplectic type.

Contents.

1.1. Statement of main results and outline of the paper.

The variety of Abelian simply transitive groups. - The set of simply
transitive Abelian groups which act affinely on a vector space V with linear
part in a prescribed linear Lie group G C GL ( V ) constitutes in a natural
way a real affine variety. To explain this we show that this set corresponds
to the solutions C(g) of a system of linear and quadratic equations in the
first prolongation

of the Lie algebra g = Lie G. This is done in Section 2.1.

Our guiding principle is that we want not only to write down the

equations defining this variety, namely,

but want also to solve them by some explicit construction. This is carried
out in Section 2.2.

We need to introduce some notation to explain our result for g =
sp(V). Let V be a vector space with a nondegenerate alternating product
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dim V = 2n. A subspace U of V is called Lagrangian if U is maximally
isotropic with respect to For ,S’ E we define the support of S by

The variety C(sp(V)) is naturally stratified by the dimension of the

support. The symplectic form u) allows the identification of ,S’3 V with a
subspace of and a corresponding notion of support for elements
of ,S’3 V . For a subspace W c V we define

The first result is (compare Theorem 9):

THEOREM 1. Let U C V be a Lagrangian subspace. There is a
one-to-one correspondence betiveen Abelian simply transitive afhne groups
of symplectic type up to conjugation in the affine symplectic group and
elements of S3U up to Sp(V)-equivalence (two elements of ,S’3U are Sp( V)-
equivalent if they lie on the same Sp(V)-orbit in S3V).

Let Uk - G~(V) denote the universal (tautological) vector bundle
over the Grassmannian G0k(V) of k-dimensional isotropic subspaces, and

the third symmetric power of this bundle. We prove then (compare
Theorem 10):

THEOREM 2. - The k-th stratum C(,SP(V))k of the variety C(sp(V))
naturally identifies with the Zariski open subbundle

of the vector bundle 

Now the classification for Abelian simply transitive affine groups of
symplectic type reads as follows (compare Theorem 10, Corollary 4):

COROLLARY l. There is a natural one-to-one correspondence be-
tween Abelian simply transitive amne groups of symplectic type with (max-
imal) translation subgroup of dimension 2n - k up to conjugation, and ho-
mogeneous cubic polynomials in S3Wreg up to the linear action of GL(W),
where W is a k-dimensional isotropic subspace of V.

In particular, every such group contains an n-dimensional subgroup
of translations.
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Special Kahler manifolds. - Let us turn now to the second part
of our article which starts in Section 3. A special Kahler manifold is

a (possibly indefinite) Kahler manifold (M, J, g) endowed with a flat

torsionfree connection V such that VJ is symmetric and = 0, where
w = ~(-, J.) is the symplectic (Kahler) form [F]. A special Kahler manifold
is called flat if the Levi-Civita connection D is flat. The simplest example
of such a manifold is obtained by taking a (pseudo-) Hermitian vector space
C’, so that the flat Levi-Civita connection D and the symplectic connection
V coincide. Henceforth a special Kahler manifold is called trivial if D = V.
We show:

THEOREM 3. - Any flat special Kahler manifold with a definite
metric is trivial.

This result is obtained by considering the algebraic constraints on
the difference tensor ,S’ = D - V of a flat special Kahler manifold. Let

(V = C’, J, g) be the standard (pseudo-) Hermitian vector space of complex
signature (p, q), p + q = n. We show that the tensor field ,S’ takes values

in a subvariety Cj(sp(V)) of the cone C(sp(V)) . In Section 3.1 we obtain
a description of the variety in a way analoguous to Theorem 1
and Theorem 2 above. These results allow for the local classification of flat

special Kahler manifolds in Section 3.2 as follows:

THEOREM 4. - Let f be a holomorphic function defined on an

open subset M C V. Assume that the pointwise support of the cubic
tensor field a3 f : M - S3,OV* defined by the holomorphic third partial
derivatives of f is isotropic and put Sj := + 83 f E ,S’3 V* . Then

M~ :== (M, J, g, V : := D + is a flat special Kahler manifold and any flat
special Kahler manifold arises locally in this way.

As a special case of the theorem we can describe the class of flat special
Kahler manifolds with constant cubic form, i.e., those manifolds which

satisfy D,S’ = 0. They admit a model with an Abelian simply transitive
group of automorphisms.

THEOREM 5. - Let W C V be a complex isotropic subspace, and

f : V - C a holomorphic cubic polynomial which identifies with an
element under the canonical identification ,S‘°,3V * ’~’ Then

the manifold V f, defined in the previous theorem, is a flat special Kahler
manifold with constant cubic form and complete connections D and V.

Moreover, any flat special KAhler manifold with constant cubic form is

locally equivalent to an open subset of some space Vf -
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The result may be refined a bit. We assume that (V, J, g) admits a
complex Lagrangian subspace U. Then any flat special Kahler manifold
with constant cubic form and without trivial factor may be obtained

by some S E and we obtain a bijection between the orbits of
the group on and equivalence classes of germs of flat
special Kahler manifolds with constant cubic form and without trivial
factor (see Theorem 17). Any such manifold has complex signature (m, m),
m = dimc U.

2. Abelian simply transitive affine groups.

Let V be a real vector space and G C GL( V) any Lie subgroup.
We denote by AffG(V) c Aff( V) the group of affine transformations
with linear part in G. Connected Lie subgroups of AffG ( V ) are called

affines groups of type G. Lie subalgebras of affg(V) = Lie AffG ( V ) are
called affines Lie algebras of type g = Lie G. We are interested in Abelian
affine groups H of type G acting simply transitively on V. This means
that the orbit map diffeomorphism. More
generally, we will consider almost simply transitive groups, i.e., groups
for which p is an open immersion. The corresponding Lie subalgebras
~ == Lie H C aff 9 (V) are almost simply transitive. This means that the
linear 3 X - X0 E V is an isomorphism. In fact, this map is the
differential of the orbit map p, which is an immersion since H is almost

simply transitive. The Lie algebras of simply transitive groups satisfy a
stronger condition. They are simply transitive, which means that for all
v E V the linear X v E TV V ££ V is an isomorphism. The next
proposition reduces the study of Abelian (almost) simply transitive affine
groups to that of Abelian (almost) simply transitive affine Lie algebras.

PROPOSITION 1. - The Lie-functor from the category of Lie groups to
the category of Lie algebras induces a bijection between the set of Abelian
simply transitive afhne groups of type G and the set of Abelian simply
transitive affines Lie algebras of type g = Lie G. The same is true for almost
simply transitive affine groups and Lie algebras.

Proof. We have seen that the Lie algebra of an Abelian (almost)
simply transitive group of type G is an Abelian (almost) simply transitive
Lie algebra of type g. It is clear that the Abelian affine group H of type G
generated by an Abelian almost simply transitive Lie algebra 0 of type g is
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almost simply transitive. It remains to show that the group generated by a
simply transitive Lie algebra # is simply transitive. From the fact that 0 is
simply transitive it follows that all orbits of H are open. V being connected,
this implies that H is transitive. So we have a diffeomorphism V ~ HI Hv,
where Hv is the stabilizer of a point v E V. Moreover Hv is discrete and
H - V is a covering of the simply connected manifold V. This
implies that Hv is trivial and hence that H is simply transitive. D

Let us denote by A’ (G) (respectively A’(g)) the set of Abelian

almost simply transitive affine groups of type G (respectively the set of
Abelian almost simply transitive affine Lie algebras of type g). The subsets
consisting of simply transitive groups and Lie algebras are denoted by
A(G) and A(g), respectively. Note that by the previous proposition we
can identify A(G) = A(g) and A’ (G) = A’(g).

2.1. The variety of simply transitive groups.

~ affg (V) be the canonical inclusion map associated to a
Lie algebra E A’(g). It gives rise to a injective linear map p = p~ : V 2013~

affg (V) by

where 0 is the differential of the orbit map 
the identity. We remark that, since h is assumed to be an Abelian Lie

algebra, the linear map p : V - aff g (V) is in fact a homomorphism of
Lie Algebras. The affine Lie algebra aff g (V) = g + V is the semidirect sum
of the linear Lie algebra g and the ideal V of infinitesimal translations. We
denote an element of this semidirect sum as a pair (S, t), where ,S‘ E g is
the linear part and t E V the translational part. In particular we can write
the monomorphism p = p~ in the form

where ,5’ : V ~ g and t : V --~ V are linear maps.

PROPOSITION 2. - Let p = (S, t) : V - affg (V) = g + V be the
monomorphism associated to an Abelian almost simply transitive affine Lie
algebra of type g. Then t = idv and S E V* 0 g satisfies:
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Conversely, any S E V* 0 g satisfying (i) and (ii) defines a monomor-
phism p = (S, idv) : V ~ affg(V) onto an Abelian almost simply tran-
sitive anine Lie p(V) of type simply transitive if and
only if

(iii) tr Sx = 0, for all X E V.

Proof. - Let us first check that t = idv. This follows from

Equations (i-ii) express that p : V - affg (V) is a homomorphism of Lie

algebras.

Now we show that (iii) is equivalent to the image of p being a

simply transitive Lie algebra. Let us first assume that j = p(V ) is a

simply transitive Lie algebra. Let H be the corresponding simply transitive
subgroup of Aff(V). For h E H we consider the Jordan-decomposition
h inside the real linear algebraic group Aff(V). Since H is Abelian,

C 77} is a group of semisimple operators which centralizes
H. By semi-simplicity T has a fixed point on V. But since T centralizes
the transitive group H it must be trivial. Therefore H is unipotent, and
in particular the linear parts of the elements of H are unipotent. This

implies (iii).

Conversely, we prove that (i)-(iii) implies that ~ is simply transitive.
We have to show that the linear map Sxv + X C V is an

isomorphism for all v E V. Therefore it is sufficient to prove that the map
X - Sxv - SvX is nilpotent, for all v C V. Let us show that tr = 0 for

all A; == 1,2,.... Because of (i) and (ii) we have = ,S’w, where w = Svk - 1 v.
Now tr Skv = 0 follows from (iii). This shows that Sv is nilpotent, for all
vEV. D

We recall [K] that the first prolongation of a Lie algebra g C V* ~ V
is defined as

Note that the equation (i) says that S’ is an element of g(l). We denote by
C’ (g) C the cone defined by the system (ii) of homogeneous quadratic
equations. It is an affine real algebraic variety. The condition (iii) defines a
- - - - - - _ I ................ l1 ’B

Zariski closed subset C(g) C C’ (g) . In fact,
where go = {~4 c g ~ tr A = 0}.
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THEOREM 6. - The correspondence H H S, where S E is

the linear part of p~, induces bijections C’(g) and A(G) ~ C(g).
This defines on the set A’ (G) of Abelian almost simply transitive affine
Lie groups of type G the structure of an afhne cone over a quadratic
projective real algebraic variety. The subset A(G) c A’ (G) consisting of
simply transitive groups is a closed subvariety defined by a system of linear
equations. Under the above identification, the action of g E G on A’(G) by
conjugation corresponds to the linear action &#x3E; ::1 ,5’ H g ~ S E g ~ 1 ~ , where
(9 ’ S)x ~= 

Proof. This follows essentially from Proposition 2. We check the
formula for the G-action on C’ (g ) C g ~ 1 ~ . From the definition of g - ,S’ it

follows that the homomorphism ((~ - S) , idY ) has the same image as

namely the conjugated Lie subalgebra ~. . This

shows that ((9. S) , idv ) = PAdg(f)) and hence that Sgl 9 = g . SH. 0

Now we specialize to the unimodular case, i.e., we assume that
G c SL(V).

COROLLARY 2. - An Abelian almost simply transitive affine group
H of of type SL( V) is simply transitive. In particular, A(G) = A’(G) and
C(g) = C’(g) for all G c SL(V).

Proof. This is a direct consequence of Proposition 2. ll

In the following section we specialize our discussion to the case where
G preserves a (possibly indefinite) scalar product or a symplectic form
on V.

2.2. The orthogonal and symplectic cases.

THEOREM 7. - Let V be a pseudo-Euclidean vector space and G c
SO( V) a Lie subgroup. Then A(G) is a point. In other words, the transla-
tion group V is the only Abelian simply transitive affine group of type G.

Proof. By Theorem 6 we know that A(G) C g(l) C Now

the theorem follows from the fact that = 0. 0

Let now V be a symplectic vector space. The symplectic case is more
interesting since the first prolongation of the symplectic Lie algebra is
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nontrivial. In fact, using the symplectic form 1J on V we identify V with
V* via v ~ := 1J(v, .). This induces identifications of the Lie algebra

with the symmetric square and of its first prolongation with
the symmetric cube S3V*, since

Explicitly, the identification of S with a totally symmetric
trilinear form is given by (X, Y, Z) - Z). Notice that is also

the vector space of homogeneous cubic polynomials on V. The preceding
discussion together with Corollary 2 establishes therefore the following
theorem.

THEOREM 8. - The correspondence H - S of Theorem 6 identifies

A(Sp(V)) with a quadratic cone in the vector space of cubic

forms 

In the following we identify ,S’3 V * with S3 V by means of c,~. Next

we want to give an explicit construction of the solutions of the quadratic
equations defining the affine variety C S3V. We recall that
the group G acts by conjugation on A(g). By Theorem 6, under the
identification A(g) - C(g) ~ g~1&#x3E;, this action is induced by the natural
linear action on g~ 1 ~ . In the case of G = Sp(V) this is the standard

representation on ,S’3V. We are also interested in the orbit space
A(g) : which is the space of conjugacy classes of Abelian simply
transitive affine Lie algebras of type G. We have a natural inclusion

C s3V/Sp(V).

THEOREM 9. - Let U C V be a Lagrangian subspace of a symplectic
vector space V. Any Sp(V)-orbit in C S’3 V intersects the

subspace S3 U C S3 V . Moreover

where the union is over all Lagrangian subspaces U C V.

Proof - Let ,S E S3 U. Then the map X - Sx takes values in
it is sufficient to observe

that, since U is isotropic, C = is an Abelian subalgebra of
linear operators.
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Now let S E We have to show that there exists a La-

grangian subspace U C V such that S E S3 U. We prove first that the
support

of ,S’ is isotropic. This implies Es C U for some Lagrangian subspace U E V.
It is sufficient to check that Sl = 0 for all X E V. In fact, by polarization
this implies = 0 for all X, Y E V and hence

The claim that s1 = 0 follows from the next computation

Now the theorem follows from the next lemma.

Proof. Let V, C V be a complement of Yo . We denote by Vol, and
Vi~ the annihilators of Tlo and V, in V*, respectively, and consider them
again as subspaces of V. The decomposition

gives rise to a decomposition 11 we have

by considering we can conclude that 

For Lie subgroups of the symplectic group we obtain:

where the union is over all Lagrangian subspaces U C V.

Now we study more closely the cone Let us define
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For any isotropic subspace W c V we define

We denote the Grassmannian of isotropic subspaces W C V of dimension k
by G~(V). Let Uk ---7 be the universal (tautological) vector bundle.

THEOREM 10. - The cone has a stratification

where 2n = dim V. The k-th stratum

is a Zariski open subbundle of the vector bundle The action of

Sp(v) on C(5p(V)) preserves the stratification and uTe have the following
identification of orbit spaces:

where W C V is a fixed k-dimensional isotropic subspace.

Proof. It is clear that

It follows from Theorem 9 that the supports of any ,S’ E is

isotropic. This implies (2.5) and, in particular, that = o for

all k &#x3E; n. For the identification of orbit spaces it is sufficient to remark

that two cubic forms Sand ,S‘’ with isotropic support W are related by
an element of Sp ( V) if and only if they are equivalent under GL ( W ) . In
fact, since W is isotropic, any element of GL(W) can be extended to an
element of Sp(V), which preserves W. Conversely, any element of Sp(V)
which maps S to 8’ has to preserve W = £s = E~/ and, hence, induces an
element of GL(W), which maps ,S’ to S’. D

COROLLARY 4. - Let H c Aff(JR2n) be an Abelian simply transitive
affine group of symplectic type, S E the cubic form defined by H.
Then the subgroup of translations in H is of dimension 2n - k, where
1~ = n.
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Proof. The subgroup of translations in H is the kernel of the map
which coincides with the kernel of ,5’ as an element of ,S’3 Y* . Since

this is precisely the orthogonal complement of ~s with respect to w, the
dimension is 2n - k. Since ~s is isotropic, k x n. C7

3. Flat special Kahler manifolds.

DEFINITION 1. - A (possibly indefinite) Kähler manifold is a (possi-
bly indefinite) Riemannian manifold (M, g) endowed with a parallel com-
plex structure J, i.e., DJ = 0 for the Levi-Civita connection D of g, so

that g is Hermitian with respect to J.

To any Kahler manifold (M, g, J) we can canonically associate the
parallel symplectic form w - g(J-, .). It is called the Kähler form.

DEFINITION 2. - A special Kahler manifold is a Kahler manifold

(M, g, J) endowed with a torsionfree and flat connection V such that

(i) = 0 and

(ii) VJ is symmetric, i.e., for all vector fields X, Y.

A special Kähler manifold (M, g, J, B1) is called flat if the Levi-Civita
connection D of g is flat.

Example. Let (M, g, J) be a flat Kähler manifold, i.e., a Kähler
manifold for which the Levi-Civita connection D is flat. Then (M, g, J, D)
is a flat special Kahler manifold. Special Kahler manifolds of this type will
be called trivial special Kähler manifolds.

The following characterization of trivial special Kahler manifolds is
easy to verify:

PROPOSITION 3. - Let (M, g, J, V) be a special Kähler manifold and
D its Levi-Civita connection. Then the following three conditions are
equivalent:

(i) (M, g, J, V) is a trivial special KAhler manifold,

Let us recall now some known results on special Kahler manifolds
which relate to flatness. It was proven in [BC] that any simply connected
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special Kahler manifold (M, g, J, V) of complex dimension n can be canon-
ically immersed into JR2n+1 as a parabolic affine hypersphere with Blaschke
metric g and affine connection V (the notions of affine hypersphere,
Blaschke metric and affine connection are discussed in detail in [NS]). We
recall the following classical theorem of Calabi and Pogorelov [Ca].

THEOREM 11. - If the Blaschke metric g of a parabolic affine hy-
persphere M of dimension rra is definite and complete, then M is aflinely
congruent to the paraboloid J . In particular, g
is flat.

This implies:

THEOREM 12. - Any special Kahler manifold (M, g, J, V) with a

definite and complete metric g is trivial.

Proof. - By [BC], the universal covering is immersed as an affine
hypersphere, which by Theorem 11 is a paraboloid. This implies that
V = D is the Levi-Civita connection and hence that (M, g, J, V) is

trivial. 0

Lu [L] proved that any special Kahler manifold (M, g, J, V) with a
definite and complete metric g is flat. Completeness is a very strong global
assumption. Flatness on the other hand is a strong local assumption. If the
metric is definite the following rigidity result holds:

THEOREM 13. - Any special KAhler manifold (M, g, J, V) with a

definite and flat metric is trivial.

A proof will be given in the next section. But let us remark that by
the immersion theorem mentioned above Theorem 13 may also be read

off from the classification of affine hyperspheres with flat and definite

Blaschke metric [VLS]. Without the assumption that the metric is definite
Theorem 13 does not hold. We will show that nontrivial flat indefinite

special Kahler manifolds exist and give a local characterization of such
manifolds in Section 3.2. More specifically, we construct there examples
of such manifolds which are geodesically complete with respect to both
connections D and V.

3.1. The variety 

Let (M, g, J, V) be a flat special Kahler manifold. We are interested
in the local properties of M, and since (M, g, J) is a flat Kahler-manifold
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we may as well consider M as ball in a standard Hermitian vectors space

(V, ~T, g) . The symplectic connection V may be expressed as V = D + S,
where S’ is a one-form on M with values We can think of it as a

map S : M ---7 V* 0 S2V*.

PROPOSITION 4. - The tensor field S satisfies the following condi-
tions :

Conversely, any tensor field satisfying the conditions (i-iv) defines a
flat special Kahler manifold (M, g, J, V : = D + S).

Notice that (i-ii) say that S’ has values in the cone 

Proof. - The first condition is equivalent to the vanishing of the
torsion of V. We claim that the Levi-Civita connection can be expressed as

The right-hand side is a torsionfree connection, by the symmetry of VJ.
Moreover it preserves J and hence the metric g - w (-, J-) :

For the last equation we have used that ~I2 = -id implies

This proves the formula for the Levi-Civita connection, which we can
restate as
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From (3.3) and (3.2) we conclude (iv). The remaining equations follow from
the flatness of V, as we will show now. We compute the curvature R~ of V:

Here we have used that D is flat, i.e., RD = 0, and torsionfree. Now [Sx, Sy]
commutes with J, whereas (Dy S) x anticommutes with J, since

and ,5’Y anticommute with J, by (iv), and DJ = 0. This shows that
R’7 = 0 implies (ii) and (iii).

Conversely, let ,5’ be a tensor field satisfying (i-iv). Then V = D + ,S’ is
a symplectic torsionfree (i) and by the formula above flat (ii-iii) connection.
It only remains to check the symmetry of VJ. For this we have to compute
VJ in terms of S’ arriving again at (3.3):

Now the symmetry of S implies that of VJ. D

The previous proposition shows that it is important to understand
the following closed conical subvariety 

LEMMA 2. - Let S E Then Es is w-isotropic and J-
invariant (and hence g-isotropic).

Proof. This follows immediately from Theorem 9, the equation
= and the definition of the support ~s, see equation (2.4). D

Now it is easy to prove Theorem 13.

Proof of Theorem 13. - The fundamental tensor field ,5’ = V - D

associated to a flat special Kahler manifold has values in Cj(.Sp(V)). We
claim that = 0 if the metric g is definite. This implies the
theorem. By the previous lemma, the support ~s of any ,S’ E is

g-isotropic and therefore ~s = 0 if the metric is definite. D

Next we want to describe for arbitrary signature of the
metric. For this it is convenient to complexify V. We obtain
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where and VO,1 are the +i-eigenspaces of (the complex linear extension
of) J. The symplectic form W extends to a complex symplectic form (again
denoted by c,~) on V~, for which the decomposition (3.5) is Lagrangian. We
have a corresponding type decomposition of the third symmetric power:

LEMMA 3. Let S E S3V. Then S C if and only if the
following two conditions are satisfied:

(i) the support 03A3S of ,S’ is w-isotropic and J-invariant.

(ii) S -~ Sc, where Sc E is a cubic form of type (3, 0) and 9,
is the conjugated cubic form of type (o, 3).

Moreover, if ,S’ E then the support Es, of E S3,OV
satisfies

Proof. If S E condition i) is satisfied by Lemma 2. To
show ii) we consider (see (2.3)) ,S’ as an element of = 

We put Vi,o = (Vo,’)"’ and Vo,l - We consider the induced dual

decomposition

The condition that and J anticommute is expressed by the condition
S(JX, Y, Z) = S(X, JY, Z) = S(X, Y, JZ), for all X, Y, Z E V. This is
equivalent to

Under the identification via w this amounts to S E Complex
conjugation on Vc extends to an antilinear involution p on so that

S3V = is the fixed point set of p. Since p interchanges and

SO,3V, ii) holds. For the converse, we note that condition i) implies (see
Lemma 1) that S E We just saw that condition ii) implies that

and J anticommute. Therefore i) and ii) imply ,S’ E 

We compute now the support 1 5 implies that
C V1°, and correspondingly we get ~s~ C V°n. Since

we conclude that
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Let W be a J-invariant isotropic subspace of V. Let us put

The previous lemma implies the following theorem.

THEOREM 14.

where the union is over all isotropic complex subspaces U c V of maximal
dimension.

Now we study more closely the cone Let us define

We denote by Gk (V) the Grassmannian of complex subspaces W C V of
(complex) dimension k and by Gi (V) C the real submanifold which

consists of isotropic subspaces. Let be the universal (tautolog-
ical) vector bundle. It is the restriction of the holomorphic universal bundle
of the complex Grassmanian Gk (V) to the submanifold Gi (V) C 

THEOREM 15. - The cone has a stratification

where the number N - n/2 is the maximal complex dimension of an
isotropic complex subspace of V. It is given by N - min(p, q) if g has
complex signature (p, q), p + q = n = dimc V. The k-th stratum

is identified with a Zariski open subbundle of the vector bundle The

action Aut(V, J, g) = U(p, q) on preserves the

stratification and we have the following identification of orbit spaces:

where W C V is a fixed complex k-dimensional isotropic subspace.
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Proof. This follows from Theorem 10 and Theorem 14, taking
under consideration the canonical identification Se +

D

3.2. Local characterization

of flat special special Kahler manifolds.

Now we derive classification results for indefinite special Kahler
manifolds. As before, let (V, J, g) be a standard (pseudo-) Hermitian vector
space of complex signature (p, q), p + q = n.

THEOREM 16. - Let f be a holomorphic function defined on an
open subset M c V*. Assume that the pointwise support of the cubic
tensor field 83 f : M - S3,OV* defined by the holomorphic third partial
derivatives of f is isotropic and put Sf :_ ~3 f + a3 f E S3V. Then

M f = (M, J, g, B7 :== D + Sf ) is a flat special Kalller manifold and any flat
special Kahler manifold arises locally in this way.

Proof. Let f be a holomorphic function such that 83 f has isotropic
support. Then, by Lemma 3, the cubic tensor field S’ f : := 9~/-)- 9~/ G ,S’3 V
has also isotropic support. This implies condition (ii) of Proposition 4.
Condition (iii) follows essentially from the construction of Sf by means of
partial derivatives, as we show next. We compute for constant (with respect
to D) vector fields X, Y, Z, W E V:

where

This shows that the tensor DS is completely symmetric, which is the

content of (iii) in Proposition 4. Finally, (iv) is a direct consequence of

Lemma 3 and the definition of So we have checked that ,S’ f
satisfies the conditions (i-iv) of Proposition 4 and, hence, it defines a flat
special Kahler manifold.

Conversely, by Proposition 4, any flat special Kahler manifold

(M, J, g, V) is locally determined by the tensor field S = V - D : M --~



1748

Cj (V), for which D,S’ is completely symmetric. This is the integrability
condition for the existence of a function h such that C = D3 h. From
Lemma 3 it follows that 6= S, + s + and the complete
symmetry of D,5’ implies the complete symmetry of D1,oSe and 
where D = D1,o + DO,1 is the type decomposition of the (complexified) flat
torsionfree connection D. This shows the existence of a holomorphic func-
tion f such that Sc = a3 f , where 8 = D1,o. Thus, S = Sf . We know by
Lemma 2 that the support of ,5’ is isotropic and, hence, by Lemma 3, also
the support of Sc is isotropic. We remark that the holomorphic function f
is related to the real function h in the proof by h = 8 ( f + f). D

Remark l. It follows from Proposition 4 that the tensor field

S = V-D = 3 f E associated to a flat special Kahler manifold defines
by means of w a commutative and associative multiplication X oY := SXY
on each tangent space. Moreover S’ is potential in the sense that S’ is defined

by the third derivatives of the function h = 8( f -~ f ) with respect to the flat
torsionfree symplectic (and metric) connection D. This is similar to the type
of structure one encounters in the theory of Frobenius manifolds. In that
theory (see e.g. [D]) one also has a cubic tensor field S which is a section
of and which is identified with a commutative and associative

multiplication by means of an isomorphism T*M ~ T M. However, the
isomorphism is given by a flat metric, whereas in our case we use the
symplectic structure. In both cases S is potential with respect to a flat
torsionfree connection compatible with the identification T*M ~--- TM.

3.3. Examples with constant cubic form.

Let (M, J, g, V) be a special Kahler manifold. We say that it has

constant cubic form if D,S’ = 0, where S’ = V - D. The special Kahler
manifold M f in the above theorem has constant cubic form if and only if f
is a cubic polynomial. In that case we may assume that f is a homogeneous
polynomial, since lower order terms are annihilated by third derivatives.
Notice that if f is a homogeneous polynomial then the condition on the
third derivatives is satisfied if and only if f considered as an element of 
has isotropic support. We say that a special Kahler manifold (M, J, g, V)
has a trivial factor if it is the product of two special Kahler manifolds and
one of the factors is trivial.

LEMMA 4. - The flat special Kahler manifold (V, J, g, ~ = D + S)
defined by a cubic form S E has a trivial factor if and only if
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Proof. Suppose that (V, J, g, V == D ~- ,S’) has a trivial factor. Then
there exists an orthogonal and complex splitting V = Vo (D Vi, where
Y° C ker ,S’ is tangent to the trivial factor. Therefore ~s is contained in

the nondegenerate subspace Vi. This implies that the isotropic subspace
Es C VI has dimension  n. Conversely, if the

isotropic space W has dimension dim W  n then we may choose

an isotropic complement W’ of W which satisfies dim W’ = dim W, so
W’ is a nondegenerate subspace. Putting Y° = we

get a complex orthogonal decomposition v = Vo EB Yl , with Vo C ker S.
This shows that Vo with the induced structures is a trivial factor of

(~~~~9~~ =D~S)~ D

It follows from the lemma and the remark above that any flat special
Kahler manifold M without a trivial factor and with constant cubic form

is locally of the form M f , where f E C and

complex Lagrangian subspace. In particular the Hermitian
vector space has real signature (21~, 21~), and dim M = 4k.

THEOREM 17. - Let (V, J, g) be a Hermitian vector space which ad-
mi ts a complex Lagrangian subspace U, and let f E C 

S3,OV* . Then the manifold M f associated to the holomorphic cubic poly-
nomial function special Kahler manifold without
trivial factor, with constant cubic form and complete connections D and
V. Conversely every flat special KAhler manifold without trivial factor and
ulith constant cubic form is locally of this form. Moreover, the correspon-
dence f - M f defines a bijection between the orbits of the group 
on SI,3 U,,g and germs of flat special Kähler manifolds with constant cubic
form and without trivial factor up to equivalence.

Proof. We already remarked that flat special Kahler manifolds
without trivial factor and constant cubic form are locally of the form M f,
for f E SO,3U"g . Two germs of manifolds M f and Mfl are isomorphic,
if and only if there exists a germ of holomorphic isometry, i.e., an affine
transformation with linear part in Aut(V, J, g) = U(m, m) which maps the
tensor ,S’ f to S f~ . In other words M f and are isomorphic if and only if
f and f’ are equivalent under the (pseudo-) unitary group U(m, m). From
Theorem 15 (3.7) we have the identification
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where the union is over all complex Lagrangian subspaces I~V C V.

(They have complex dimension N - m == n/2.) This shows that the
correspondence f H Mf onto isomorphism classes
of germs of flat special Kahler manifolds with constant cubic form and
without trivial factor is one-to-one. Note that D is the canonical complete
connection on the vector space M - V. We explain now why V is

complete. Recall from Section 2 that by iii) of Proposition 2 the tensor
9 = D - V E defines a simply transitive affine action of V on
itself. The orbit map 03A6 in 0, V 3 X - X + E V, of this action is
therefore a diffeomorphism and it is easy to very that V = ~* D. Hence, in

particular is complete. D

Remark 2. - The flat special Kahler manifolds M f - (V, J, g, B7 ==
D + Sf) of Theorem 17 admit a simply transitive vector group of auto-
morphisms. In fact, we can consider the constant tensor fields J, g and Sf
as left-invariant complex structure, metric and connection on the vector
group V. Every flat special Kahler manifold with a simply transitive group
of automorphisms is of this type.

By the c-map, see [ACD] and references therein, we can associate with
the special Kahler manifold M f a flat hyper-Kahler manifold of signature
(4m, 4m). This flat hyper- Kähler manifold then admits a simply transitive
group of automorphisms which is a semi-direct product of two vector groups
of dimension 4m.

Remark 3. - The examples M f = (V, J, g, V = D -+- S f ) are complete
with respect to both connections V and D. It would be interesting to know
if there do exist further examples of flat special Kahler manifolds (i.e.,
examples with a non-constant cubic form) which are complete with respect
to both connections.
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