Double Schubert polynomials and degeneracy loci for the classical groups
Annales de l'Institut Fourier, Volume 52 (2002) no. 6, pp. 1681-1727.

We propose a theory of double Schubert polynomials P w (X,Y) for the Lie types B, C, D which naturally extends the family of Lascoux and Schützenberger in type A. These polynomials satisfy positivity, orthogonality and stability properties, and represent the classes of Schubert varieties and degeneracy loci of vector bundles. When w is a maximal Grassmannian element of the Weyl group, P w (X,Y) can be expressed in terms of Schur-type determinants and Pfaffians, in analogy with the type A formula of Kempf and Laksov. An example, motivated by quantum cohomology, shows there are no Chern class formulas for degeneracy loci of “isotropic morphisms” of bundles.

Nous proposons une théorie des polynômes de Schubert doubles P w (X,Y) pour les types de Lie B,C,D qui étend naturellement la famille de Lascoux et Schützenberger pour le type A. Ces polynômes possèdent des propriétés de positivité, d’orthogonalité et de stabilité, et représentent les classes des variétés de Schubert et des lieux de dégénérescence des fibrés vectoriels. Quand w est un élément grassmannien maximal du groupe de Weyl, P w (X,Y) s’exprime en termes de déterminants du type de Schur et de pfaffiens, de manière analogue à la formule de Kempf et Laksov pour le type A. Un exemple, motivé par la cohomologie quantique, montre qu’aucune formule dans les classes de Chern ne décrit les lieux de dégénérescence des “morphismes isotropes” des fibrés.

DOI: 10.5802/aif.1931
Classification: 14M15, 14C17, 05E15
Keywords: degeneracy loci, Schubert polynomials
Mot clés : lieux de dégénérescence, polynômes de Schubert

Kresch, Andrew 1; Tamvakis, Harry 2

1 University of Pennsylvania, Department of Mathematics, Philadelphia PA 19104-6395 (USA)
2 Brandeis University, Department of Mathematics, Waltham MA 02454-9110 (USA)
@article{AIF_2002__52_6_1681_0,
     author = {Kresch, Andrew and Tamvakis, Harry},
     title = {Double {Schubert} polynomials and degeneracy loci for the classical groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1681--1727},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {6},
     year = {2002},
     doi = {10.5802/aif.1931},
     zbl = {1059.14063},
     mrnumber = {1952528},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1931/}
}
TY  - JOUR
AU  - Kresch, Andrew
AU  - Tamvakis, Harry
TI  - Double Schubert polynomials and degeneracy loci for the classical groups
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1681
EP  - 1727
VL  - 52
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1931/
DO  - 10.5802/aif.1931
LA  - en
ID  - AIF_2002__52_6_1681_0
ER  - 
%0 Journal Article
%A Kresch, Andrew
%A Tamvakis, Harry
%T Double Schubert polynomials and degeneracy loci for the classical groups
%J Annales de l'Institut Fourier
%D 2002
%P 1681-1727
%V 52
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1931/
%R 10.5802/aif.1931
%G en
%F AIF_2002__52_6_1681_0
Kresch, Andrew; Tamvakis, Harry. Double Schubert polynomials and degeneracy loci for the classical groups. Annales de l'Institut Fourier, Volume 52 (2002) no. 6, pp. 1681-1727. doi : 10.5802/aif.1931. https://aif.centre-mersenne.org/articles/10.5802/aif.1931/

[AC] E. Akyildiz; J. Carrell An algebraic formula for the Gysin homomorphism from G/B to G/P, Illinois J. Math, Volume 31 (1987) no. 2, pp. 312-320 | MR | Zbl

[Be] A. Bertram Quantum Schubert calculus, Adv. Math, Volume 128 (1997) no. 2, pp. 289-305 | DOI | MR | Zbl

[BGG] I. N. Bernstein; I. M. Gelfand; S. I. Gelfand Schubert cells and cohomology of the spaces G/P, Russian Math. Surveys, Volume 28 (1973) no. 3, pp. 1-26 | DOI | MR | Zbl

[BH] S. Billey; M. Haiman Schubert polynomials for the classical groups, J. Amer. Math. Soc, Volume 8 (1995) no. 2, pp. 443-482 | DOI | MR | Zbl

[Bi] S. Billey Kostant polynomials and the cohomology ring for G/B, Duke Math. J, Volume 96 (1999) no. 1, pp. 205-224 | DOI | MR | Zbl

[Bo] A. Borel Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math, Volume 57 (1953), pp. 115-207 | DOI | MR | Zbl

[BS] N. Bergeron; F. Sottile Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J, Volume 95 (1998) no. 2, pp. 373-423 | MR | Zbl

[C-F] I. Ciocan; - Fontanine The quantum cohomology ring of flag varieties, Trans. Amer. Math. Soc, Volume 351 (1999) no. 7, pp. 2695-2729 | DOI | MR | Zbl

[D1] M. Demazure Invariants symétriques des groupes de Weyl et torsion, Invent. Math, Volume 21 (1973), pp. 287-301 | DOI | MR | Zbl

[D2] M. Demazure Désingularization des variétés de Schubert généralisées, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), Volume 7 (1974), pp. 53-88 | Numdam | MR | Zbl

[F1] W. Fulton Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J, Volume 65 (1992) no. 3, pp. 381-420 | MR | Zbl

[F2] W. Fulton Schubert varieties in flag bundles for the classical groups, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc. 9) (1996), pp. 241-262 | Zbl

[F3] W. Fulton Determinantal formulas for orthogonal and symplectic degeneracy loci, J. Differential Geom, Volume 43 (1996) no. 2, pp. 276-290 | MR | Zbl

[F4] W. Fulton Intersection Theory, Ergebnisse der Math, 2, Springer-Verlag, Berlin, 1998 | MR | Zbl

[FK] S. Fomin; A. N. Kirillov Combinatorial B n -analogs of Schubert polynomials, Trans. Amer. Math. Soc, Volume 348 (1996) no. 9, pp. 3591-3620 | DOI | MR | Zbl

[FP] W. Fulton; P. Pragacz Schubert varieties and degeneracy loci, Lecture Notes in Math, 1689, Springer-Verlag, Berlin, 1998 | MR | Zbl

[Gra] W. Graham The class of the diagonal in flag bundles, J. Differential Geom, Volume 45 (1997) no. 3, pp. 471-487 | MR | Zbl

[Gro] A. Grothendieck Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 13 (1960/61) no. 221 | Numdam | Zbl

[HT] J. Harris; L. W. Tu On symmetric and skew-symmetric determinantal varieties, Topology, Volume 23 (1984) no. 1, pp. 71-84 | DOI | MR | Zbl

[JLP] T. Józefiak; A. Lascoux; P. Pragacz Classes of determinantal varieties associated with symmetric and skew-symmetric matrices, Math. USSR Izvestija, Volume 18 (1982), pp. 575-586 | DOI | MR | Zbl

[KL] G. Kempf; D. Laksov The determinantal formula of Schubert calculus, Acta Math, Volume 132 (1974), pp. 153-162 | DOI | MR | Zbl

[KT2] A. Kresch; H. Tamvakis Quantum cohomology of orthogonal Grassmannians (2001) (Preprint) | MR

[L] A. Lascoux Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris, Sér. I Math, Volume 295 (1982) no. 5, pp. 393-398 | MR | Zbl

[LP1] A. Lascoux; P. Pragacz Operator calculus for Q ˜-polynomials and Schubert polynomials, Adv. Math, Volume 140 (1998) no. 1, pp. 1-43 | DOI | MR | Zbl

[LP2] A. Lascoux; P. Pragacz Orthogonal divided differences and Schubert polynomials, P ˜-functions, and vertex operators, Michigan Math. J, Volume 48 (2000), pp. 417-441 | DOI | MR | Zbl

[LP3] A. Lascoux; P. Pragacz Schur Q-functions and degeneracy locus formulas for morphisms with symmetries (Recent Progress in Intersection Theory) (2000), pp. 239-263 | Zbl

[LS] A. Lascoux; M.-P. Schützenberger Polynômes de Schubert, C. R. Acad. Sci. Paris, Sér. I Math, Volume 294 (1982) no. 13, pp. 447-450 | MR | Zbl

[M1] I. G. Macdonald Notes on Schubert polynomials, 6, Publ. LACIM, Univ. de Québec à Montréal, Montréal, 1991 | MR

[M2] I. G. Macdonald Schubert polynomials, Surveys in combinatorics, 1991 (Guildford, 1991) (L.M.S. Lecture Note Series), Volume 166 (1991), pp. 73-99 | Zbl

[M3] I. G. Macdonald Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[P1] P. Pragacz Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, Topics in Algebra, Part 2 (Warsaw, 1988), Volume 26 (1990), pp. 189-199 | Zbl

[P2] P. Pragacz Algebro-geometric applications of Schur S- and Q-polynomials, Séminaire d'Algèbre Dubreil-Malliavin 1989-1990 (Lecture Notes in Math), Volume 1478 (1991), pp. 130-191 | Zbl

[PR1] P. Pragacz; J. Ratajski A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians, J. reine angew. Math, Volume 476 (1996), pp. 143-189 | MR | Zbl

[PR2] P. Pragacz; J. Ratajski Formulas for Lagrangian and orthogonal degeneracy loci; Q ˜-polynomial approach, Compositio Math, Volume 107 (1997) no. 1, pp. 11-87 | DOI | MR | Zbl

[S] I. Schur Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. reine angew. Math, Volume 139 (1911), pp. 155-250 | DOI | JFM

[Ta] H. Tamvakis Arakelov theory of the Lagrangian Grassmannian, J. reine angew. Math, Volume 516 (1999), pp. 207-223 | DOI | MR | Zbl

[Tu] L. W. Tu Degeneracy loci, Proc. conf. algebraic geom. (Berlin, 1985) (Teubner-Texte Math), Volume 92 (1986), pp. 296-305 | Zbl

[KT1] A. Kresch; H. Tamvakis Quantum cohomology of the Lagrangian Grassmannian (J. Algebraic Geometry, to appear) | MR | Zbl

Cited by Sources: