The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group by an abelian group whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra cocycle to correspond to a locally group cocycle.
Le principal résultat de cet article est une suite exacte pour le groupe abélien des extensions centrales d’un groupe de Lie connexe de dimension infinie par un groupe abélien de Lie pour lequel la composante connexe est un quotient d’un espace vectoriel par un sous-groupe discret. Un point essentiel de ce résultat est qu’il n’est pas restreint aux groupes lissement paracompacts. Par conséquence, il s’applique à tous les groupes de Lie-Banach et de Lie-Fréchet. La suite exacte codifie en particulier les obstructions précises pour l’intégration d’un cocycle d’algèbre de Lie à un cocycle localement lisse des groupes de Lie.
Keywords: infinite-dimensional Lie group, invariant form, central extension, period map, Lie group cocycle, homotopy group, local cocycle, diffeomorphism group
Mot clés : groupe de Lie de dimension infinie, forme différentielle invariante, extension centrale, application de période, cocycle de groupe de Lie, groupe d'homotopie, cocycle local, groupes de difféomorphisme
@article{AIF_2002__52_5_1365_0, author = {Neeb, Karl-Hermann}, title = {Central extensions of infinite-dimensional {Lie} groups}, journal = {Annales de l'Institut Fourier}, pages = {1365--1442}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {5}, year = {2002}, doi = {10.5802/aif.1921}, zbl = {1019.22012}, mrnumber = {1935553}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1921/} }
TY - JOUR AU - Neeb, Karl-Hermann TI - Central extensions of infinite-dimensional Lie groups JO - Annales de l'Institut Fourier PY - 2002 SP - 1365 EP - 1442 VL - 52 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1921/ DO - 10.5802/aif.1921 LA - en ID - AIF_2002__52_5_1365_0 ER -
%0 Journal Article %A Neeb, Karl-Hermann %T Central extensions of infinite-dimensional Lie groups %J Annales de l'Institut Fourier %D 2002 %P 1365-1442 %V 52 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1921/ %R 10.5802/aif.1921 %G en %F AIF_2002__52_5_1365_0
Neeb, Karl-Hermann. Central extensions of infinite-dimensional Lie groups. Annales de l'Institut Fourier, Volume 52 (2002) no. 5, pp. 1365-1442. doi : 10.5802/aif.1921. https://aif.centre-mersenne.org/articles/10.5802/aif.1921/
[Br93] Topology and Geometry, Graduate Texts in Mathematics, 139, Springer-Verlag, Berlin, 1993 | MR | Zbl
[Br97] Sheaf Theory, Graduate Texts in Mathematics, 170, Springer-Verlag, Berlin, 1997 | MR | Zbl
[Bry93] Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. in Math., 107, Birkhäuser Verlag, 1993 | MR | Zbl
[Ca51] Sur les extensions des groupes topologiques, Brioschi Annali di Mat. Pura et Appl., Ser 4, Volume 32 (1951), pp. 295-370 | DOI | MR | Zbl
[Ca52a] Le troisième théorème fondamental de Lie (Oeuvres I), Volume 2 (1952), pp. 1143-1148
[Ca52b] La topologie des espaces représentifs de groupes de Lie (Oeuvres I), Volume 2 (1952), pp. 1307-1330
[Ca52c] Les représentations linéaires des groupes de Lie (Oeuvres I), Volume 2 (1952), pp. 1339-1350
[Ch46] Theory of Lie Groups I, Princeton Univ. Press, 1946 | MR | Zbl
[DL66] Espaces fibrés en algèbres de Lie et en groupes, Invent. Math, Volume 1 (1966), pp. 133-151 | DOI | MR | Zbl
[dlH72] Classical Banach Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math., 285, Springer-Verlag, Berlin, 1972 | MR | Zbl
[EK64] Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. A, Volume 67 (1964), pp. 15-31 | MR | Zbl
[EL88] Enlargeability of local groups according to Malcev and Cartan-Smith, Hermann, Paris, 1988 | MR | Zbl
[EML43] Relations between homology and homotopy theory, Proc. Nat. Acad. Sci. U.S.A, Volume 29 (1943), pp. 155-158 | DOI | MR | Zbl
[EML47] Cohomology theory in abstract groups. II, Annals of Math, Volume 48 (1947) no. 2, pp. 326-341 | DOI | MR | Zbl
[Est54] A group theoretic interpretation of area in the elementary geometries, Simon Stevin, Wis. en Natuurkundig Tijdschrift, Volume 32 (1954), pp. 29-38 | MR | Zbl
[Est62] Local and global groups, Indag. Math. (Proc. Kon. Ned. Akad. v. Wet. Series A), Volume 24 (1962), pp. 391-425 | Zbl
[Est88] Une démonstration de E. Cartan du troisième théorème de Lie, Séminaire Sud-Rhodanien de Géométrie VIII: Actions Hamiltoniennes de Groupes; Troisième Théorème de Lie (1988) | Zbl
[Fu70] Infinite Abelian Groups, I, Acad. Press, New York, 1970 | MR | Zbl
[Gl01a] Infinite-dimensional Lie groups without completeness restriction, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Volume 55 (2002), pp. 43-59 | Zbl
[Gl01b] Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups (J. Funct. Anal., to appear) | MR | Zbl
[Gl01c] Algebras whose groups of units are Lie groups (2001) (Preprint) | MR | Zbl
[Go86] The construction of a simply connected Lie group with a given Lie algebra, Russian Math. Surveys, Volume 41 (1986), pp. 207-208 | DOI | MR | Zbl
[God71] Eléments de Topologie Algébrique, Hermann, Paris, 1971 | MR | Zbl
[Ha82] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc, Volume 7 (1982), pp. 65-222 | DOI | MR | Zbl
[He73] Principal bundles and groups extensions with applications to Hopf algebras, J. Pure and Appl. Algebra, Volume 3 (1973), pp. 219-250 | DOI | MR | Zbl
[Hi76] Differential Topology, Graduate Texts in Mathematics, 33, Springer-Verlag, 1976 | MR | Zbl
[Ho51] Group extensions of Lie groups I, II, Annals of Math, Volume 54 ; 54 (1951 ; 1951) no. 1 ; 3, p. 96-109 ; 537-551 | DOI | MR | Zbl
[HoMo98] The Structure of Compact Groups, Studies in Math., de Gruyter, Berlin, 1998 | MR | Zbl
[Hub61] Homotopical Cohomology and Cech Cohomology, Math. Annalen, Volume 144 (1961), pp. 73-76 | MR | Zbl
[KM97] The Convenient Setting of Global Analysis, Math. Surveys and Monographs, 53, Amer. Math. Soc., 1997 | MR | Zbl
[La99] Fundamentals of Differential Geometry, Graduate Texts in Math, 191, Springer-Verlag, 1999 | MR | Zbl
[Ma01] Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie groups, Volume 55 (2002), pp. 61-76 | Zbl
[Ma57] Les ensembles boréliens et les extensions des groupes, J. Math, Volume 36 (1957), pp. 171-178 | MR | Zbl
[MacL63] Homological Algebra, Springer-Verlag, 1963
[Mi59] Convex structures and continuous selections, Can. J. Math, Volume 11 (1959), pp. 556-575 | DOI | MR | Zbl
[Mi83] Remarks on infinite-dimensional Lie groups, Proc. Summer School on Quantum Gravity, Les Houches (1983) | Zbl
[MN01] Central extensions of current groups (2001) (Preprint) | MR | Zbl
[MT99] Description of infinite dimensional abelian regular Lie groups, J. Lie Theory (1999), pp. 487-489 | MR | Zbl
[Ne01a] Representations of infinite dimensional groups, Infinite Dimensional Kähler Manifolds (To appear in DMV Seminar), Volume 31 (2001)
[Ne01b] Universal central extensions of Lie groups (Acta Appl. Math. to appear) | MR | Zbl
[Ne96] A note on central extensions, J. Lie Theory (1996), pp. 207-213 | MR | Zbl
[Ne98] Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math, Volume 497 (1998), pp. 171-222 | DOI | MR | Zbl
[Omo97] Infinite-Dimensional Lie Groups, Translations of Math. Monographs, 158, Amer. Math. Soc., 1997 | MR | Zbl
[Pa65] On the homotopy type of certain groups of operators, Topology, Volume 3 (1965), pp. 271-279 | DOI | MR | Zbl
[Pa66] Homotopy theory of infinite dimensional manifolds, Topology, Volume 5 (1965), pp. 1-16 | DOI | MR | Zbl
[PS86] Loop Groups, Oxford University Press, Oxford, 1986 | MR | Zbl
[Ro95] Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Reports on Math. Phys, Volume 35 (1995), pp. 225-266 | DOI | MR | Zbl
[Se70] Cohomology of topological groups, Symposia Math, Volume 4 (1970), pp. 377-387 | MR | Zbl
[Se81] Unitary representations of some infinite-dimensional groups, Comm. Math. Phys, Volume 80 (1981), pp. 301-342 | DOI | MR | Zbl
[Sh49] Group extensions of compact Lie groups, Annals of Math (1949), pp. 581-586 | DOI | MR | Zbl
[Si77] Weakly dense subgroups of Banach spaces, Indiana Univ. Math. Journal (1977), pp. 981-986 | DOI | MR | Zbl
[Sp66] Algebraic Topology, McGraw-Hill Book Company, New York, 1966 | MR | Zbl
[St78] Continuous cohomology of groups and classifying spaces, Bull. of the Amer. Math. Soc (1978), pp. 513-530 | DOI | MR | Zbl
[Ste51] The topology of fibre bundles, Princeton University Press, Princeton, New Jersey, 1951 | MR | Zbl
[tD91] Topologie, de Gruyter, Berlin -- New York, 1991 | MR | Zbl
[Te99] Infinite-dimensional Lie Theory from the Point of View of Functional Analysis (1999) (Ph. D. Thesis, Vienna)
[Ti83] Liesche Gruppen und Algebren, Springer, New York-Heidelberg, 1983 | MR | Zbl
[TL99] Integrating unitary representations of infinite-dimensional Lie groups, Journal of Funct. Anal., Volume 161 (1999), pp. 478-508 | DOI | MR | Zbl
[Tu95] An elementary proof of Lie's Third Theorem (1995) (Unpublished note)
[TW87] Central extensions and physics, J. Geom. Physics, Volume 4 (1987) no. 2, pp. 207-258 | DOI | MR | Zbl
[Va85] Geometry of Quantum Theory, Springer-Verlag, 1985 | MR | Zbl
[Wa83] Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1983 | MR | Zbl
[We80] Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, Springer-Verlag, 1980 | MR | Zbl
[We95] An introduction to homological algebra, Cambridge studies in advanced math, 38, Cambridge Univ. Press, 1995 | MR | Zbl
[We95] Funktionalanalysis, Springer-Verlag, Berlin-Heidelberg, 1995 | MR | Zbl
Cited by Sources: