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CENTRAL EXTENSIONS OF INFINITE-DIMENSIONAL
LIE GROUPS

by Karl-Hermann NEEB

Ann. Inst. Fourier, Grenoble
52, 5 (2002), 1365-1442

Introduction.

The purpose of this paper is to describe the structure of the abelian

group of central extensions of an infinite-dimensional Lie group in the

sense of Milnor ([Mi83], resp. These Lie groups are manifolds

modeled on locally convex spaces. A serious difficulty one has to face in
this context is that even Banach manifolds are in general not smoothly
paracompact, which means that not every open cover has a subordinated
smooth partition of unity. Therefore de Rham’s Theorem is not available
for these manifolds. Typical examples of Banach-Lie groups which are
not smoothly paracompact are the additive groups of the Banach spaces
C( [0, 1], R) and 1’(N, R) .

In the Lie theoretic context, the central extensions Z - G - G
of interest are those which are principal bundles. For G and Z fixed, the
equivalence classes of such extensions can be described by an abelian group
ExtLie (G, Z), so that the problem is to describe this group as explicitly as
possible. This means in particular to relate it to the Lie algebra cohomology

Keywords: Infinite-dimensional Lie group - Invariant form - Central extension - Period
map - Lie group cocycle - Homotopy group - Local cocycle - Diffeomorphism group.
Math. classification: 22E65 - 58B20 - 58B05.
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group Hj(g, 3) which classifies the central extensions 3 ~ 9 -» g of
the topological Lie algebra g by the abelian Lie algebra 3 (assumed to
be a sequentially complete locally convex space) for which there exists a
continuous linear section 9 ---+ g. Our central result is the following exact
sequence for a connected Lie group G, its universal covering group G, the
discrete central subgroup C G, and an abelian Lie group Z which
can be written as Z = 3 /F, where F C 3 is a discrete subgroup (Theorem
7.12):

where Lin(g, 3) denotes the space of continuous linear maps 9 - 3. Here
C assigns to a group homomorphism 1: Z the quotient of G x Z
modulo the graph of ~-1 (here inversion is meant pointwise in Z) and D
assigns to a group extension the corresponding Lie algebra extension. The
definition of P is more subtle. Let c,~ E J) be a continuous Lie algebra
cocycle and SZ be the corresponding left invariant closed 3-valued 2-form
on G. To obtain the first component P, ( ~c~~ ) of P([w]), we first define a
period homomorphism by integrating Q over sufficiently
smooth representatives of homotopy classes. Then Pl ( ~c,~~ ) . qz 0 perw,
where qZ : ~ ~ Z is the quotient map. The second component P2([w]) is

defined as follows. For each X E g we write X, for the corresponding
right invariant vector field on G. Then is a closed 3-valued 1-

form to which we associate a homomorphism 7r1 (G) -&#x3E; via an embedding
Hom(7r1 (G), 3). This embedding is established directly, so

that we have it also if G is not smoothly paracompact (Theorem 3.6). In
terms of symplectic geometry, the condition P2([w]) = 0 means that the
action of G on (G, Q) has a moment map, but we won’t emphasize this
point of view.

If the space H~ (g, ~ ) is trivial or if at least D = 0, then (1) leads to

a formula which has first been obtained for connected compact Lie groups
by A. Shapiro ([Sh49]). Likewise many particular results which essen-
tially are consequences of (1) have been obtained in the setting of finite-
dimensional Lie groups by G. Hochschild 

For a simply connected Lie group G the sequence (1) reduces to
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showing that in this case the group ExtLie (G, Z) can be identified with the
subgroup of H~ (g, ~ ) consisting of those classes [w] for which the image IIW
of per~, the so-called period group, is contained in F.

Similar conditions are well-known in the theory of geometric quanti-
zation of smoothly paracompact Dirac manifolds (M, 0), i.e., S2 is a closed
2-form on M. Here the integrality of the cohomology class [Q] of the 2-form
Q is equivalent to the existence of a so-called pre-quantum bundle, i.e., a
T-principal bundle T --~ M -~ M whose curvature 2-form is Q (cf. [TW87]
and [Bry93] for the infinite-dimensional case). Based on these observations,
Tuynman and Wiegerinck gave a proof of the exactness of (1) in Hj (g, R)
for finite-dimensional Lie algebras p ([TW87, Th. 5.4]). As was observed
in [Ne96], for finite-dimensional groups G the map P is simpler because
the vanishing of makes the first component of P superfluous. That
the vanishing of ~r2(G), resp., R) for finite-dimensional Lie groups
G permits to construct arbitrary central extensions for simply connected
groups is a quite old observation of E. Cartan ( ~Ca52a~ ) . He used it to prove
Lie’s Third Theorem by constructing a Lie group associated to a Lie alge-
bra g as a central extension of the simply connected covering group of the
group Inn(g) _ of inner automorphisms (see also [Est88] for an elab-
oration of Cartan’s method). This method has been extended to Banach-
Lie groups by van Est and Korthagen who characterize the existence of a
Banach-Lie group with Lie algebra g by the discreteness of a topological
period group corresponding to the Lie algebra extension 3 (g) - g ---+7 ad g
and the simply connected covering of the group Inn(g) endowed with its
intrinsic Banach-Lie group structure ([EK64]). It is remarkable that their
approach does not require the existence of smooth local sections, which do
not always exist for Banach-Lie groups. The reason for this is that they
can use van Est’s theory of local group extensions and their enlargeability
to global extensions because for Banach-Lie groups the existence of local
groups corresponding to central extensions of Lie algebras can be obtained
from the Baker-Campbell-Hausdorff series, but for more general Lie alge-
bras, this series need not converge on a 0-neighborhood in g (see [GI01b] for
a discussion of a large class of groups where the Baker-Campbell-Hausdorff
formalism still works well). In a previous version of this paper we have used
a result of van Est and Korthagen to show that for a simply connected Lie

group G the vanishing of P([w]) implies the extendability of a local group
cocycle f to a global one, and hence the existence of a corresponding global
group extension (this is needed for the exactness of (1) in Hj (g, 3)) . In the
present version we give a much more direct argument which was inspired
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by the construction of group cocycles in [Est54] by using the symplectic
area of geodesic triangles.

For smooth loop groups central extensions are discussed in [PS86], but
in this case many difficulties are absent because these groups are modeled

on nuclear Frechet spaces which are smoothly regular ([KM97, Th. 16.10~ ) ,
hence smoothly paracompact because this holds for every smoothly Haus-
dorff second countable manifold modeled over a smoothly regular space
([KM97, 27.4]). In [TL99, Prop. 5.3.1] Toledano Laredo discusses central
extensions of Lie groups obtained from projective representations with a
smooth vector by constructing a corresponding locally smooth 2-cocycle.
In Section 5 of his paper he applies results of Pressley and Segal to gen-
eral groups, which restricts the scope of his theory to smoothly paracom-
pact groups. In Omori’s book one also finds some remarks on central T-
extensions including in particular Cartan’s construction for simply con-
nected regular Fr6chet-Lie groups ([Omo97, pp. 252/254]). If the singular
cohomology class associated to c,~ does not vanish but is integral, then
Omori uses simple open covers (the Poincar6 Lemma applies to all finite
intersections) to construct the ’lP-bundle from the corresponding integral
Cech cocycle. Unfortunately it is not known to the author whether all

infinite-dimensional Lie groups have such open covers.

It would be very interesting to extend the results and the methods
of the present paper to general smooth Lie group extensions. In this

context the work of Hochschild ( ~Ho5l~ ) and Eilenberg-MacLane ([EML47])
contains results which have good potential to extend to infinite-dimensional
Lie groups. Another interesting project is to establish the corresponding
results for prequantization of manifolds M endowed with a closed 2-form Q.
Here the question is under which conditions there exists a prequantization,
i.e., a principal T-bundle T 2013~ with a connection 1-form a such

that da = i.e., S2 is the curvature form of the bundle. For smoothly
paracompact manifolds this condition is the discreteness of the group of

periods of SZ ([TW87], [Bry93]). Is this still true for infinite-dimensional
manifolds? The results of the present paper cover the case of a Lie group
G with a closed left invariant 2-form, where we do not have to assume
that G is smoothly paracompact. Unfortunately our methods rely on the
group structure of the underlying manifold, hence do not apply to a non-
homogeneous setting.

We approach the problem to describe ExtLie (G, Z) by first discussing
for abstract groups the exact sequence in Eilenberg-MacLane cohomology
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induced by a central extension A ~ B - C (Theorem 1.5, [MacL63]):

where ExtA (B, Z) denotes the equivalence classes of central extensions
q: B - B for which the subgroup A := q-1 (A) is central, and Extab(A, Z)
denotes the equivalence classes of abelian group extensions of A by Z.
This long exact sequence remains valid for central extensions of topological
groups and Lie groups as well, if we interpret the Hom- and Ext-groups in
the appropriate sense.

In Section 2 we collect the necessary results on central extensions of

topological groups and in Section 3 we provide some results on infinite-
dimensional manifolds and Lie groups which are well-known in the finite-

dimensional case. In particular we show that for general manifolds we have
a natural embedding HdR(M, ~) ~ Hom(7r,(M),h) for the first 3-valued
de Rham cohomology group. In Section 4 we explain how the setting for
abstract, resp., topological groups has to be modified to deal with cen-
tral extensions of Lie groups with smooth local sections. Section 5 is ded-

icated to the construction of the period homomorphism 3.
If G is smoothly paracompact, it can be obtained quite directly from the
de Rham Theorem, but in general one has to construct it directly. This
is done by considering piecewise smooth maps from triangulated mani-
folds with boundary with values in G and by showing that the prescription

works if ~: S2 --~ G is piecewise smooth with respect to
a triangulation. We also show that whenever we have a central Lie group
extension Z - (7 2013~ G, the connecting homomorphism b: ~2 (G) -~ 7r1(Z)
from the long exact homotopy sequence of the Z-bundle G - G coincides
with - perw .

Section 6, which is the heart of the paper, contains the construction
of a global group cocycle f : G x G ~ Z for simply connected groups G and
any Lie algebra cocycle w, where Z can be defined The so defined

group Z is a Lie group if and only if Hv is discrete, so that we obtain a Lie
group extension if and only if Hv is discrete. In Section 7 we eventually put
all pieces together to prove the exactness of (1). An interesting byproduct
is that the vanishing of P2 ( [c~~ ) : ~rl (G) -~ Lin(g, 3) precisely describes the
condition under which the adjoint action of g on the central extension g
integrates to a smooth representation of the group G. In this sense the

adjoint and coadjoint action of G on 9 may exist even if the group G does
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not. This happens in particular if G is simply connected and H, is not
discrete.

It is a well-known fact in finite-dimensional Lie theory that extensions
of simply connected Lie groups are topologically trivial in the sense that
they have a global smooth section, hence can be defined by a global cocy-
cle. For central extensions of simply connected Lie groups the existence of
a global smooth section is equivalent to the exactness of the corresponding
left invariant closed 2-form SZ (Proposition 8.4). If G is smoothly paracom-
pact, then each central 3-extension of G has a smooth global section, and
one can give more accessible criteria for the existence of a smooth global
section. The central result of Section 8 is Theorem 8.8 which gives a ver-
sion of the exact sequence (1) for central Lie group extensions with smooth
global sections.

Section 9 is a collection of examples displaying various aspects in the
description of the group ExtI,ie(G, Z) by the exact sequence (1).

I am grateful to H. Glockner for the excellent proof reading of the
article.

1. The abstract setting for central extensions of groups.

In this section we discuss several aspects of central extensions of

groups on the level where no topology or manifold structure is involved. The
focus of this section is on the Hom-Ext exact sequence for central extensions

of groups (Theorem 1.5; see also [MacL63]). This result can also be obtained
by more elaborate spectral sequence arguments which basically are also
suited for non-central extensions, but for central extensions it can be

obtained quite directly. Moreover, we shall later need explicit information
on the maps in this exact sequence to generalize it to central extensions of
topological and Lie groups, which will be done by verifying that the crucial
steps generalize to the topological and the Lie group context.

Throughout this section G denotes a group and Z an abelian group.

DEFINITION 1.1. - We define the group
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of Z-valued 2-cocycles and the subgroup

of Z-valued 2-coboundaries. In both cases the group structure is given by
pointwise multiplication. Since both groups are abelian, it makes sense to
define the group

Remark 1.2. - To each f E Z2 (G, Z) we associate a central extension
of G by Z via

This multiplication turns G into a group with neutral element (1,1) and
inversion given by

The projection q: G ~ G, (g, z) H g is a homomorphism whose kernel is
the central subgroup Z, hence defines a central extension of G by Z. The

conjugation in this group is given by

One can show that every central Z-extension of G can be realized this

way, and that the group H2 (G, Z) parametrizes the equivalence classes
of central extensions of G by Z, justifying the notation Ext(G, Z) (cf.
[MacL63, Th. IV.4.1]). D

Remark 1.3 (The connecting homomorphism). - Let E: A 0’
B~C be a central extension of C by A. We write [fE] for the corre-

sponding element of Ext(C, A), where fE E Z2(C, A) is a representing
cocycle. Let Z be an abelian group. We define a homomorphism

It is clear that E* is a well-defined group homomorphism. The central
extension of C by Z corresponding to [1 o fE] is given by
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Writing its elements as ~b, z~ . := (b, z)D, the homomorphism q: C --~ C is
given by q([b, z]) = 0(b). This is the standard pushout construction. D

Remark 1.4. - (a) If one is only interested in those central extensions
of abelian groups G which are abelian, then one requires the cocycle f to
satisfy f (a, b) - f (b, a) which leads to the groups Zab (G, Z) for abelian
groups G, Z. We have B 2 (G, Z) = B2 (G, Z) because G is abelian, so that
we get an inclusion

(b) Although Extab (G, R) = 0 holds for each abelian group G because
R is divisible, we might have Ext(G, R) ~ 0 for certain abelian groups G.
A typical example is the central extension G of G := R~ given by 8 = IR3
with the multiplication

in the three-dimensional Heisenberg group. 0

The exact sequence discussed below provides crucial information on
how the group Ext(C, Z) of a quotient C ~ B/A is related to the Ext-
groups of A and B. Later we will see that it generalizes in an appropriate
sense to topological groups and Lie groups. It is instructive to compare
Theorems 1.5 and 1.6 below with the corresponding results for abelian
groups ([Fu70, Th. 51.3]) which are sharper in the sense that the last map
in the sequence is surjective.

THEOREM 1. 5. - Let be a central extension of C

by A, and Z an abelian group. Then

is exact. Here 0*. [f]: = [ f o (/J x /3)] is the inflation map and a* . [ f J : -
[ f o (a x a)] is the restriction map.

Proof. This is a slight refinement of the well-known exact sequence
which stops at Ext(B, Z) (cf. [MacL63, p. 354] or [We95, 6.8.3]). Essentially
the proof for the corresponding exact sequence for abelian groups still works
for central extensions (see [Fu70, Th. 51.3] for the corresponding result for
abelian groups). Therefore we only discuss the exactness at Z).
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In view - - 1, it remains to see that ker a* C im 0*.
Let f E Z~(~) (B, Z) and qB : B := B x f Z - B be the corresponding
central extension. We assume that [f o (a x a)] = 1 and have to show

that [ f] C im (3*. First we observe that there exists a homomorphism
7:~L 2013~ B with qB o o~ = a. The assumption f E Z~(A) (B, Z) implies
that a(A) C qï31(a(A)) is central in B, so that we may form the quotient
group C := Bla(A) which is a central extension of C/A ~ by

Z. Let qc: C --+ C be the corresponding quotient map. Now it
suffices to show that

We define a homomorphism

where ~3: B -~ C is the quotient map. That imq C 0* C follows from
B 0 qB == qc 0 B. We claim that y is bijective. The injectivity follows from

To see that q is surjective, let (b, c) E /3* C and pick b E B with b = qB (-b).
implies that there exists a z c Z

THEOREM 1.6. - Let be an extension of abelian

groups and G be a group. Then

is exact. Here a,,. [f] - [a o f], 0. - [f] = [/3 o and E* .~ - 7* E is the
pullback of E to a central extension of G.

Proof. Again, the proof of the corresponding result for abelian

groups [Fu70, Th. 51.3] works. D

2. Central extensions of topological groups.

For a topological group G and an abelian topological group Z we
consider only those central Z-extensions q: G - G which are Z-principal
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bundles, i.e., for which there exist an open 1-neighborhood U C G and
a continuous map 7: U - G with q o a = idu (cf. also the approach in
[He 73] ). As we will see below, these are precisely those central extensions
that can be represented by a cocycle f : G x G - Z which is continuous in
a neighborhood of 1 x 1, and this leads to a generalization of Theorems 1.5
and 1.6 to central extensions of topological groups. Before we can derive
these facts, we collect some generalities on topological groups. Throughout
this paper, all topological groups are assumed to be Hausdorff.

LEMMA 2.1. - Let G be a connected simply connected topological
group and T a group. Let U be an open symmetric connected identity
neighborhood in G and f : U --~ T a function with

for

Then there exists a unique group homomorphism extending f. If, in

addition, T is a topological group and f is continuous, then its extension
is also continuous.

Proof [HoMo98, Cor. A.2.26]. 0

PROPOSITION 2.2. - Let G and Z be topological groups, where G is
connected, and Z 6 G a central extension of G by Z. Then G carries
the structure of a topological group such that G --~ G is a Z-principal
bundle if and only if the central extension can be described by a cocycle
f : G x G -~ Z which is continuous in a neighborhood of (1,1) in G x G.

Proof. First we assume that G is a Z-principal bundle over G.
Then there exist a 1-neighborhood U C G and a continuous section
a: U - G of the map q: G- G. We extend a to a global section G -~ G.
Then f (x, y) : defines a 2-cocycle G x G - Z which is
continuous in a neighborhood of ( 1,1 ) .

Conversely, we assume that G ~ G x f Z holds for a 2-cocycle
f : G x G - Z which is continuous in a neighborhood of (1,1) in G x G. Let
U C G be an open symmetric 1-neighborhood such that f is continuous on
U x U, and consider the subset

Then K = K-1. We endow K with the product topology of U x Z. Since
the multiplication MG continuous, the set
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is an open subset of K x K such that the multiplication map

is continuous. In addition, the inversion

is continuous. Since G is connected, it is generated by U, and therefore
G is generated by K = q-’(U). Therefore [Ti83, p. 62] applies and
shows that G carries a unique group topology for which the inclusion map

open embedding. It is clear that with respect to

this topology, the map q: G - G is a Z-principal bundle. D

Remark 2.3. - To derive a generalization of Proposition 2.2 to groups
which are not necessarily connected, one has to make the additional

assumption that for each g E G the corresponding conjugation map
G is continuous in the identity. In view of Proposition 2.2, this

condition is automatically satisfied for all elements in the open subgroup
generated by U, hence redundant if G is connected. D

DEFINITION 2.4. - Let G and Z be topological groups, where G is
connected. We have seen in Proposition 2.2 that the central extensions of
G by Z which are principal Z-bundles can be represented by 2-cocycles
f: G x G - Z which are continuous in a neighborhood of ( 1,1 ) in G x G.
We write Z) for the group of these cocycles. Likewise ule have a group

Z) of 2-coboundaries f (x, y) = where h: G --+ Z

is continuous in a I-neighborhood. Then the group

classifies the central extensions of G by Z which are principal bundles. 0

A typical example of a central extension of a compact group which
has no continuous local section is the 

where q(x) = X2 is the squaring map on the infinite-dimensional torus 

Remark 2.5. - (a) We consider the setting of Remark 1.3, where
B is a principal A-bundle. This means that there exists a local section
a: Uc - B which can be used to obtain a local section of C - C, so that
E* maps continuous homomorphisms to central extensions with continuous
local sections.

Therefore the maps in Theorem 1.5 are compatible with the topolog-
ical situation, and we thus obtain for connected groups A, B and C the
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sequence of maps

where Hom denotes continuous homomorphisms.

It is easy to verify that the proof of Theorem 1.5 remains valid in
this topological context (cf. [Se70, Prop. 4.1]). One has to use the following
easy facts:

(1) Pull-backs and pushout constructions preserve the existence of
continuous local sections.

(2) For central extensions 0: B -~ C with continuous local sections
a continuous homomorphism f: B - Z factors through a continuous
homomorphism C - Z if and only if ker 0 C ker f.

(3) A group homomorphism between topological groups is continuous
if and only if it is continuous in the identity, resp., on a neighborhood of
the identity.

(b) Similar arguments show that each extension E: A a B 0 C
of abelian topological groups which is a principal A-bundle leads for each
connected topological group G to an exact sequence

It is instructive to describe the image of E* corresponding to a
universal covering map qG : G - G for a topological group G.

PROPOSITION 2.6. - Let G be a connected, locally arc wise connected
and semilocally simply connected topological group and qG : d --+ G a
universal covering homomorphism. We identify with ker qG. For

a central extension of topological groups Z ~ q ) G the following
conditions are equivalent:

(1) There exists a continuous local section U --~ 

for x, y, xy E U.

(2) G ~ G x f Z, where f E Z2 (G, Z) takes the value 1 on a

neighborhood of ( 1,1 ) in G x G.
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(3) There exists a homomorphism ~y: 7r1 ( G) - Z and an isomorphism

the graph of d ~ -y(d)-1.

Proof. (1) (2) follows directly from the definitions.

(1) ~ (3): We may w.l.o.g. assume that U is connected, U = U-1, and
that there exists a continuous section ~: U - G of the universal covering
map qG. Then

extends uniquely to a continuous homomorphism f : G - G with f o a - ~u
and qo f = qG (Lemma II.1). We define 1/;: G x Z - G, (g, z) - f (g) z. Then
7p is a continuous group homomorphism which is a local homeomorphism
because

We conclude that 0 is a covering homomorphism. Moreover, V) is surjective
because its range is a subgroup of G containing Z and mapped surjectively
by q onto G. This proves that

On the other hand,

(3) ~ (1) follows directly from the fact that the map
a covering morphism.

3. Topology of infinite-dimensional manifolds.

So far we have only dealt with abstract groups or topological groups.
In this section we turn to manifolds and specifically to infinite-dimensional
ones modeled on locally convex spaces. Sometimes we will have to require
the model space to be sequentially complete to ensures the existence of
Riemann integrals. For more details on this setting we refer to [Mi83],
[ClOla] and [NeOla]. As we will explain in some more detail below, the
approach of Kriegl and Michor ([KM97]) is slightly different, but coincides
with the other one for Frechet manifolds, i.e., manifolds modeled on Frechet
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spaces. An unpleasant obstacle one has to face when dealing with infinite-
dimensional manifolds is that they need not be smoothly paracompact,
i.e., not every open cover has a subordinate smooth partition of unity (cf.
[KM97]). Hence there is no a priori reason for de Rham isomorphisms

to hold because the sheaf theoretic proofs break
down. This is a problem that already arises in the classical setting of Banach
manifolds because there are Banach spaces M for which there exists no

smooth function supported by the unit ball, so that M is in particular not
smoothly paracompact. Simple examples are the spaces C( ~0, l~ ) and ll(N)
(cf. [KM97, 14.11]). On the topological side, paracompactness is a natural
assumption on manifolds. In view of Theorem 1 in [Pa66], a manifold is
metrizable if and only if it is first countable and paracompact which for

sequentially complete model spaces implies in particular that the model
space is Fréchet (cf. [KM97, Lemma 27.8]). Fr6chet-Lie groups are always
paracompact because they are first countable topological groups, hence
metrizable.

It is a central idea in this paper that all those parts of the de Rham

isomorphism that are essential to study central extensions of Lie groups still
remain true to a sufficient extent. Here a key point is that the Poincar6

Lemma is still valid. In particular we will see that we have an injection

where the isomorphism is a direct conse-

quence of the Hurewicz Theorem (Remark A. 1.4).

DEFINITION 3.1. - (a) Let X and Y be topological vector spaces,
U C X open and f : ~7 2013~ Y a continuous map. Then the derivative of f at
x in the direction of h is defined as

whenever it exists. The function f is called differentiable in x if df (x) (h)
exists for all It is called continuously differentiable or C1 if it is

differentiable in all points of U and

is a continuous map. It is called a Cn-map if df is a Cn-1-map, and Coo if
it is C’ for all n E N. This is the notion of differentiability used in [Mi83],
[Ha82], [G10la] and 
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(b) We briefly recall the basic definitions underlying the convenient
calculus in [KM97]. Let E be a locally convex space. The cOO-topology on E
is the final topology with respect to the set E). We call E convenient
if for each smooth curve cl: II~ -~ E there exists a smooth curve c2: R - E

with c2 = ci (cf. (KM97, p. 20~).
Let U C E be an open subset and f: U - F a function, where F is a

locally convex space. Then vrTe call f conveniently smooth if

This concept quite directly implies nice cartesian closedness properties for
smooth maps (cf. [KM97, p. 30J). 0

Remark 3.2. - If E is a sequentially complete locally convex (s.c.l.c.)
space, then it is convenient because the sequential completeness implies
the existence of Riemann integrals ([KM97, Th. 2.14]). If E is a Frechet
space, then the c°-topology coincides with the original topology ([KM97,
Th. 4.11~).

Moreover, for an open subset U of a Fréchet space, a map f: U - F
is conveniently smooth if and only if it is smooth in the sense of [Mi83].
This can be shown as follows. Since C’ (R, E) is the same space for

both concepts of differentiability, the chain rule shows that smoothness
in the sense of [Mi83] implies smoothness in the sense of convenient

calculus. Now we assume that f: U - F is conveniently smooth. Then the
derivative df : U x E - F exists and defines a conveniently smooth map
df: U - L(E, F) C C°° (E, F) ([KM97, Th. 3.18]). Hence df : U x E -~ F
is also conveniently smooth, hence continuous with respect to the c°°-
topology. As E x E is a Fréchet space, it follows that df is continuous.

Therefore f is C1 in the sense of [Mi83], and now one can iterate the
argument. D

If M is a differentiable manifold and 3 a locally convex space, then a

3-valued k-form c,~ on M is a function which associates to each p E M

a k-linear alternating map TP (M) ~ ~ ~ such that in local coordinates the
map (p, vl , ... , v~ ) H c,~ (p) (vl , ... , v~ ) is smooth. We write SZ~ (M, ~ ) for

the space of smooth k-forms on M with values in 3.

LEMMA 3.3 (Poincar6 Lemma). - Let E be locally convex, 3 an s.c.1.c.
space and U C E an open subset which is star-shaped with respect to 0. Let
cv E be a 3-valued closed k + 1-form. Then cv is exact. Moreover,
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w = dcp for some W E Ok(U,J) with p(0) = 0 given by

Proof. For the case of Fréchet spaces Remark 3.2 implies that
the assertion follows from [KM97, Lemma 33.20]. On the other hand, one
can prove it directly in the context of locally convex spaces by using the
fact that one may differentiate under the integral for a function of the
type fo H (t, x) dt, where H is a smooth function] - s,1 -t- £[x U - 3 (cf.
[KM97, p. 32]). The existence of the integrals follows from the sequential
completeness of 3. For the calculations needed for the proof we refer to
[La99, Th. V.4.1]. D

PROPOSITION 3.4. - Let M be a connected nlanifold, 3 an s.c.l.c.
space and a E a closed 1-form. Then there exists a connected

covering q: M - M and a smooth function f : M - 3 with df = q*a.
Proof (cf. Sect. XIV.2 in [God71] for the finite-dimensional case).

On M we consider the pre-sheaf 0 given for an open subset U C M by

It is easy to verify that is a sheaf on M (cf. [We80, Sect. 2.1]).
To determine the stalks 0x, x E M, of the sheaf T, we use the

Poincar6 Lemma. Let x E M. Since M is a manifold, there exists a
neighborhood U of x which is diffeomorphic to a convex subset of a locally
convex space. Then the Poincar6 Lemma implies for each y E 3 the existence
of a smooth function fu on U with dfu = a lu and f U (x) - y. Since U is
connected, the function fu is uniquely determined by its value in x. Now
let V be another open set containing x, and f v E with [fu]x = [fv]x.
Choosing an open neighborhood W C U n V of x which is diffeomorphic to
a convex domain, we conclude from = that f v I w = fu I w.
Therefore the 3, [f]x H f (x) is a linear bijection.

Now let p: ~" - Uxcx 0x - M denote the 6tale space over M
associated to the sheaf ,~’. We claim that p is a covering map. Let x E X
and U as above. Then 0(U) E# ~, as we have seen above. Therefore

IF(U,.F) ~--- T(U) ~-~ 0x (cf. [We80, Th. 2.2.2]). For each z e 3 we write
sz : U - 0 for the continuous section given by sz(y) = [fz]y, where
fz E 0(U) satisfies fz(x) = z. Then the sets sz(U) are open subsets of 1 by
the definition of the topology on 1 ([We80, p. 42]). Moreover, these sets are
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disjoint because f z ~ y = first implies u = y and further f z ( y ) = fw( u),
so that fz = f2" and therefore z = w. This proves that p-1 (U) = 
is a disjoint union of open sets, where sz : U ---~ sz (U) is a homeomorphism
for each z by the construction of 0. Thus p is a covering map.

Pick xo E M and an inverse image yo E ~ Then the connected
component M of 0 containing yo is a manifold with a covering map
q: M - M. Moreover, the function f : M --~ J, [s]y E---~ s(y) is smooth. It

remains to show that q* a = df. So let s: U - 0 be a smooth section
of 0. Then f o s E C° (U, 3) is a smooth function with df (s (x)) ds (x) =:
d( f o s)(x) = a(x) for all x E U. Since ds(x) _ (dq(s(x)))-l, it follows that
df (s (x)) = (q*a)(s(x)), and therefore that df = q*cx. 0

COROLLARY 3.5. - If M is a simply connected manifold and 3 an
s.c.1.c. space, then HJR (M, J) vanishes.

Proof. - Let a be a closed 3-valued 1-form on M. Using Proposi-
tion 3.4, we find a covering q: M 2013~ M and a smooth function f : M - 3
with df = q* a. Since M is simply connected, the covering q is trivial, hence
a diffeomorphism. Therefore a is exact. 0

THEOREM 3.6. - Let M be a connected manifold., 3 an s.c.1.c. space,
xo E M, and 7r1 (M) 7r, (M, xo). Then uje have an inclusion

which is given on a piecewise differentiable loop ~y: [0, 1] --+ M in xo for

The can also be calculated as follows: Let f a E

C°(M, 3) with d f a = q*a, where q: M -~ M is the universal covering
map, and write M x 7r1 (M) ---+ M, (x, g) H for the right action of

71 (M) on M. Then the function fa o pg - far is constant equal to (([a]) (g).

Proof (cf. Theorem 14.1.7 in [God71]). - Let q: M -~ M be a simply
connected covering manifold and yo E q-1 (xo ) . In view of Corollary 3.5,
for each closed 1-form a on M, the closed 1-form q*a on M is exact. Let
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Let denote the action of

on M by deck transformations. We put

Then ((a) (1) - 0 and

For each g E 7r1 ( M ) the function h : - /1; f a - f a satisfies
f a (y0.g) and

Therefore h is constantly ((a)(g), and we obtain ~(a) (glg2) _ ((~)(~2) +
((o;)(~i). This proves that ((a) E Hom(7r1 (M), 3).

Suppose that ((a) = 0. Then = 0 holds for each 9 E 7ri (M),
showing that the function fa factors through a smooth function f : M - 3
with f o q = fa. Now q*df = dfa = q*a implies df = a, so that a is exact.
If, conversely, a is exact, then the function fa is invariant under 7r, (M),
and we see that ~(cx) = 0. Therefore (: Hom(7r1(M),3) factors
through an inclusion HJR (M, 3) - Hom(r1 (M), 3).

Finally, let [-y] E 7r1(M), where -y: ~0,1~ - M is piecewise smooth. Let
%y: ~0,1~ -~ M be a lift of -y with ~(0) = yo. Then

The following lemma shows that exactness of a vector-valued 1-form
can be tested by looking at the associated scalar-valued 1-forms.

LEMMA 3.7. - Let a E fl1(M,J) be a closed 1-form. If for each

continuous linear functional A on 3 the o cx is exact, then cx is

exact.

Proof. If A o a is exact, then the group homomorphism ((a) :
zri (M) - 3 satisfies A o ((a) = 0 (Theorem 3.6). If this holds for each
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A e 3’ = Lin(3, R), then the fact that the continuous linear functionals on
the locally convex space 3 separate points implies that ~(a) = 0 and hence
that a is exact. 0

To see that the map ( is surjective, one needs smooth paracompact-
ness which is not always available, not even for Banach manifolds. For an
infinite-dimensional version of de Rham’s Theorem for smoothly paracom-
pact manifolds we refer to [KM97, Thm. 34.7]. The following proposition
is a particular consequence:

PROPOSITION 3.8. - If M is a connected smoothly paracompact man-

ifold, then the inclusion map (: Hd 1R (MI J) ---+ Hom( 7r1 (M), J) is bijective.
a

PROPOSITION 3.9. - Let M be a connected manifold, 3 an s.c.l.c.

space and r C 3 a discrete subgroup. Then hIF carries a natural manifold
structure such that the tangent space in every element of 3/r can be
canonically identified with J. For a smooth function f: M --&#x3E; 3/r ure can
thus identify the differential df with a 3-valued 1-form on M. For a closed
3-valued 1-form a on M the following conditions are equivalent:

( 1 ) There exists a smooth function f: M -* 3/F with df = a.

Proof. Let q: M - M denote the universal covering map and fix
a point xo C M. Then the closed 1-form q* a on M is exact (Theorem 3.6),
so that there exists a unique smooth function f : M - 3 with d f = q* a and

= 0. In Theorem 3.6 we have seen that for each g E 7r, (M) we have

(1) # (2): Let p:3 --~ 3 /r denote the quotient map. We may w.l.o.g.
assume that f (q (xo ) ) - p(0). The function p o f : M --~ ~ /h satisfies

d(p o f ) = q*a, and the same is true for f o q: M --~ 3/F. Since both
have the same value in xo, we see that p o f = f o q. This proves that p o f is
invariant under and therefore (3.1) shows that ((a) (7r, (M)) C F.

~ 
(2) ~ (1): If (2) is satisfied, then (3.1) implies that the function

po f : M - 3 /r is 7r, (M)-invariant, hence factors through a function f : M -~
3/F with f o q = p o f. Then f is smooth and satisfies q*df = d1 = q*a,
which implies that df = a. D
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Applications to Lie groups.

Next we apply the results of this section to homomorphisms of Lie
groups. A Lie group G is a group and a manifold modeled on a locally
convex space for which the group multiplication and the inversion are
smooth maps. We write gx, resp., for the left, resp.,
right multiplication on G. Then each X e Ti (G) corresponds to a unique
left invariant vector field X, with Xl (g) E G. The space of

left invariant vector fields is closed under the Lie bracket of vector fields,
hence inherits a Lie algebra structure. In this sense we obtain on g := Tl (G)
a continuous Lie bracket which is uniquely determined by [X, Y] l = ~Xl, Y].
Similarly we obtain right invariant vector fields and

they satisfy [Xr, Yr] = - [X, Y]r (cf. [Mi83], [ClOla], [NeOla], [KM97]).

LEMMA 3.10. - Let G be a Lie group, 3 an s.c.l.c. space and C~ (g, 3)
the space of alternating continuous n-linear maps g~ --, 3. Then the

isomorphisms of vector spaces

assigning to a E C,(9,3) the corresponding left invariant n-form L(a) E
SZ~ (G, ~ ) intertwine the differentials on C,* (g, 3) and 0* (G, 3). In particular,
L(Z) (g, 3) ) consists of closed forms and L ( B~ (g, ~ ) ) of exact forms.

Proof. It suffices to evaluate L(a) on left invariant vector fields
Xi. Then the formula

follows directly from the definition of the differentials on both sides. D

LEMMA 3.11. - Let G be a Lie group, ~ an s.c.l.c. space, 0 E Q2 (G, J)
a left invariant closed 2-form, and X E g. Then the 3-valued 1-form

i(Xr).O = on G is closed. for a left invariant 1-form a,
then all the forms are exact.

Proof. Since the right invariant vector fields on G correspond to
the left multiplication action of G on itself, Lemma A.2.5 implies that for
each X E g
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If a is a left invariant 1-form with Q = da, then for each X E g
Lemma A.2.5 leads to

which implies that is exact. El

DEFINITION 3.12. - A Lie group G is called regular if for each closed
interval I C R, 0 E I, and X E COO (I, g) the ordinary differential equation

has a solution 1x E C°° (I, G) and the evolution map

is smooth. D

Remark 3.13. - If h is an s.c.l.c. vector space, then h is a regular Lie
group because the Fundamental Theorem of Calculus holds for curves in

h. The smoothness of the evolution map is trivial in this case because it is

a continuous linear map. Regularity is trivially inherited by all Lie groups
where r C h is a discrete subgroup.

If, conversely, Z is a regular Fr6chet-Lie group, then the exponential
function exp: 3 -~ Zo is a universal covering homomorphism, so that Zo ^_-’
3 /r holds for the identity component Zo of Z, where h := ker exp ~ 7r1 (Z)
([MT99]). 0

For an example of a Lie group without exponential function we refer
to [GI01c, Sect. 7]. In this example the group is not modeled over a s.c.l.c.
space and so far, no example of a non-regular s.c.l.c. Lie group is known.

LEMMA 3.14 ([Mi83, Lemma 7.1]). - Let G and H be connected Lie
groups and ~1/2~ ~ ~ two Lie group homomorphisms for which the
corresponding Lie algebra homomorphisms dcpl (1) and dcp2 (1 ) coincide.

Then pi = 0

COROLLARY 3.15. - If G is a connected Lie group, then ker Ad =

Z(G).

Proof - Let I9(x) = In view of Lemma 3.14, for g E G the
conditions Ig = idG and = Ad(g) = idg are equivalent. This implies
the assertion. D
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THEOREM 3.16. - If H is a regular Lie group, G is a simply con-
nected Lie group, and ~o: g ~ C~ is a continuous homomorphism of Lie
algebras, then there exists a unique Lie group homomorphism a: G --~ H
with = cp.

Proof - This is Theorem 8.1 in [Mi83] (see also [KM97, Th. 40.3]).
The uniqueness assertion does not require the regularity of H, it follows
from Lemma 3.14. D

COROLLARY 3.17. - Let G be a simply connected Lie group, 3 an
s.c.1.c. space, and a: g --~ 3 a continuous Lie algebra homomorphism.
Then there exists a unique smooth group homomorphism f : G --~ ~ with

df (1) = a.

Proof. Since every s.c.l.c. vector space 3 is a regular Lie group
(Remark 3.13), the assertion follows from Theorem 3.16. D

COROLLARY 3.18. - Let G be a connected Lie group, 3 an s.c.l.c.

space, h C- 3 a discrete subgroup, and A: g - 3 a continuous Lie algebra
homomorphism. Then there exists a smooth group homomorphism f : G -
Z := 3/F with if and only if ~(a) (7r, (G)) C r holds for the left
invariant closed 1-form cx on G with al = A.

_ _ 

Proof. Let q: G ~ G denote the universal covering morphism and
f : G - 3 the unique Lie group homomorphism with = A (Corollary
3.17). Let qz: 3 -~ Z denote the quotient map. Then fz := G - Z is
a Lie group homomorphism with dfz = a. Whenever a homomorphism f as
required exists, its differential df is a left invariant 1-form, hence coincides
with a. Therefore f o q = fz.

This proves that f exists if and only if ker q C ker fz which in turn
means that f (ker q) C r. On the other hand ((a)(7r1(G)), and
this concludes the proof. D

4. Cocycles for central extensions of Lie groups.

In the setting of Lie groups, we consider only those central exten-
sions G - G which are smooth principal bundles, i.e., have a smooth
local section. We simply call them smooth central extensions (cf. [KM97,
Sect. 38.6]). A typical example of an extension which does not have this
property is
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which does not have any smooth local section because the closed subspace
co(N) of 1° (N) is not complemented (cf. [We95, Satz 4.6.5]). Nevertheless,
according to Michael’s Theorem ([Mi59]), the quotient map has a continu-
ous section.

In this section we collect general material on central extensions of Lie
groups. In particular we discuss the representability of Lie group extensions
by locally smooth cocycles and explain how group and Lie algebra cocycles
are related.

Central extensions and cocycles.

LEMMA 4.1. - Let G be a connected topological group and K = K-1
be an open 1-neighborhood in G. We further assume that K is a smooth
manifold such that the inversion is smooth on K and there exists an open

1-neighborhood V C K with V2 C K such that the group multiplication
m: V x V - K is smooth. Then there exists a unique structure of a Lie

group on G for which the inclusion map K - G induces a diffeomorphism
on open neighborhoods of 1.

If G is not connected, then we have to assume in addition that for

each g E G there exists an open 1-neighborhood Kg C K such that
:= gxg-1 maps Kg into K and 19 Kg - K is smooth.

Proof. This is proved exactly as in the finite-dimensional case (cf.
[Ch46, §14, Prop. 2] or [Ti83, p. 14]). 0

PROPOSITION 4.2. - Let G and Z be Lie groups, where G is con-

nected, and Z - G - G a central extension of G by Z. Then G carries
the structure of a Lie group such that G 2013~ G is a smooth central ex-
tension if and only if the central extension can be described by a cocycle
f: G x G - Z which is smooth in a neighborhood of (1,1) in G x G.

Proof (cf. [TW87, Prop. 3.11] for the finite-dimensional case). - First
we assume that G -~ G is a smooth central extension of G. Then there
exists a 1-neighborhood U C G and a smooth section a: U ~ G of the map
q: G ~ G. We extend a to a global section G -~ G. Then

defines a 2-cocycle G x G - Z which is smooth in a neighborhood of ( 1,1 ) .

Conversely, we assume that 8 ~ G x f Z holds for a 2-cocycle
f : G x G - Z which is smooth in a neighborhood of ( 1,1 ) in G x G. We
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endow G with the unique group topology such that G - G is a topological
principal bundle (Proposition 2.2). Then Lemma 4.1 implies the existence
of a unique Lie group structure on G compatible with the topology and such
that there exists a 1-neighborhood of the product type UG ~ where UG is
a 1-neighborhood in G, Uz is a 1-neighborhood in Z, and the product map
UG x is a diffeomorphism. Hence there exists a smooth local
section a : UG -~ G, showing that G - G is a smooth central extension. D

In [Va85, Th. 7.21] one finds a version of Proposition 4.2 for finite-
dimensional Lie groups, where Lie groups are considered as special locally
compact groups. The existence of Borel cross sections for locally compact
groups implies that their central extensions can be described by measurable
cocycles which, for Lie groups, can be replaced by equivalent cocycles which
are smooth near to the identity (cf. also [Ca5l] and [Ma57]).

Remark 4.3. - If the group G is not connected, then one has to
make the additional assumption that for each g E G the corresponding
conjugation map 19: G ---+ G is smooth in an identity neighborhood, but
this is only relevant for the elements not contained in the open subgroup
generated by U (cf. Remark 2.3 for the continuous case).

For Banach-Lie groups and in particular for finite-dimensional Lie

groups every automorphism of the topological structure is automatically
smooth, which can be deduced from the fact that the exponential function
is a local diffeomorphism around 1. Therefore Proposition 4.2 requires for
Banach-Lie groups which are not connected no additional requirements,
once we have a group topology on G with the required properties. 0

DEFINITION 4.4. - (a) Let G and Z be Lie groups, where G is

connected. We have seen in Proposition 4.2 that the central extensions
of G by Z which are smooth principal Z-bundles can be represented by
2-cocycles f : G x G - Z which are smooth in a neighborhood of (1,1) in
G x G. We write Zs (G, Z) for the group of these cocycles. Likewise we have
a group of 2-coboundaries f(x,y) == where

h: G - Z is smooth in a 1-neighborhood. Then the group

classifies the smooth central extensions of G by Z.

(b) Let h be a topological vector space and g a topological Lie algebra.
A continuous h-valued 2-cocycle is a continuous skew-symmetric function
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with

It is called a coboundary if there exists a continuous linear map a E
Lin(g, j) with y) = a ([x, y]) for all x, y E g. We write j) for the
space of continuous h-valued 2-cocycles and B c 2 (g, j) for the subspace of
coboundaries defined by continuous linear maps. We also define the second
continuous Lie algebra cohomology space

(c) If w is a continuous J-valued cocycle on g, then uTe write 9 
for the topological Lie algebra whose underlying topological vector space
is the product space g x 3, and the bracket is defined by

Then q: g ov 3 -~ g, (x, z) H x is a central extension and a~: g ~ 
(~c, 0) is a continuous linear section of q. 0

Remark 4.5. - We consider the setting of Remark 2.5, where A, B,
C, G and Z are Lie groups such that B - C is a smooth central, resp.,
abelian extension. In this context everything in Remark 2.5 carries over to
the smooth context. In particular we obtain an exact sequence of maps

where Hom denotes smooth homomorphisms and the groups A, B and C
are connected. Likewise we obtain for a connected Lie group G an exact

sequence

From group cocycles to Lie algebra cocycles.

For the following lemma we define for a smooth map f : M x N - 3
and (p, q) E M x N the bilinear map
(4.1) 
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where "/:] 2013 6’,c[2013~ M, resp., I - E, E N are curves with q(0) = p,
q’(0) = v, resp., 1](0) = q, q’(0) = w. It is easy to see that the right hand
side does not depend on the choice of curves 1 and 1].

LEMMA 4.6. Let Z ~ hIF, f E Zs (G, Z) and 6 c--- G x f Z the
corresponding central extension of G by Z. We use a smooth local section
of qz: 3 - Z to write f = qz o f3 on an open neighborhood of (1,1) in
G x G. Then the Lie algebra cocycle

Proof. We identify g with g x h via the differential ---+ g-
in 1 of the section ~: G -~ G, g - (g, 1) which is smooth in a neighborhood
of the identity. The relation

(Remark 1.2) leads to the following formula for the adjoint action of G
on g :

Here di f, resp., d2 f denotes the derivative of f in the first, resp., the

second argument. Now we recall d ( Ad ( ~ ) . ( X , z ) ) ( 1 ) = ad ( ~ ) . ( X , z ) ([Mi83,
p. 1036]) and observe that f3 (g, 1) == 0 implies d113 ( 1,1 ) = 0 Taking
derivatives with respect to (g, z) in 1 E G, we therefore obtain the formula

The preceding lemma implies in particular that for each Z)
we obtain an element D f E 3), and further that D induces a group
homomorphism

because equivalent Lie group extensions lead to equivalent Lie algebra
extensions. This can also be verified more directly by observing that for
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with a locally smooth function .~: G - Z with

we obtain

In fact, we can write £ = qz o .~~ with a locally smooth function f3: G - 3
and accordingly

We then obtain

Here we use that the vector field vanishes in 1, which implies f.i.

5. The period homomorphism of a Lie algebra cocycle.

Let G be a connected Lie group with Lie algebra g and 3 an s.c.l.c.
space. In this section we associate to each continuous Lie algebra cocycle
w E (g, J) a period homomorphism

The main difficulty of the construction lies in the fact that we do not assume
that G is smoothly paracompact. If this is the case, then the construction
is straight-forward: We consider the left invariant 3-valued 2-form SZ on G
with Q1 = w. Its cohomology class [Q] E can be

interpreted as a homomorphism H2 (G) ~ ~ which in particular induces a
homomorphism 7r2(G) ---+ J if composed with the Hurewicz homomorphism
7r2(G) ---+ H2 (G) . For this argument we use de Rham’s Theorem which is
not available for non smoothly paracompact manifolds. Nevertheless, we
will see that a direct construction works.

In the next section it will become apparent that the period homo-

morphism provides the main obstruction to the integrability of the central
Lie algebra extension g to a group extension in the sense that such an

extension exists if and only if the period group IIW := im(per~) is discrete
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Piecewise smooth maps on simplicial complexes.

DEFINITION 5.1. In the following Op - 0,
1} denotes the p-dimensional standard simplex in We also

write (vo,..., vp) for the ainne simplex in a vector space spanned by the
afhnely independent points vo, ... , vp. In this sense AP = (0, e~, ... , ep),
where ei denotes the ith basis vector in RP.

Let Y be a smooth manifold. A continuous map f : Asp - Y is called a
C1-map if it is difFerentiable in the interior int(Op) and in each local chart
of Y all directional derivatives x H df (x) (v) of f extend continuously to
the boundary ofAP. We call f a Ck -map if all maps x H df (x) (v) are
Ck-1 , and we say that f is smooth if f is C~ for every We write

Y) for the set of smooth maps AP - Y.

This point of view can also be used to defines smooth maps on convex
subsets C of finite-dimensional vector spaces with E := C - C. In this

context we call a continuous map f: C -* Y a C1-map if it is C~ on the
relative interior (C) of C with respect to the affine subspace aff (C)
it generates, and for which the differential df : int,, , ff(c) (C) x E --~ Y extends
to a continuous map C x E - Y, where aff(C) denotes the affine span of C.
As for simplices, iteration leads to a smoothness concept for maps C - Y.

If E is a simplicial complex, then we call a map f : ~ -~ Y piecewise
smooth if it is continuous and its restrictions to all simplices in E are
smooth. We write Y) for the set of piecewise smooth maps £ - Y.
There is a natural topology on this space inherited from the natural

embedding into the space flscz Cp (,S’, Y), where S runs
through all simplices of ~ and the topology on is defined as in

Definition A.3.5 as the topology of uniform convergence of all directional
derivatives of arbitrarily high order. D

LEMMA 5.2. - If f: AP - Y is a smooth map, then each restriction
of f to a face of AP is a smooth map.

Proof. Locally we have

As the integrand on the right hand side extends continuously to the
boundary, the restriction of f to a face F has directional derivatives which
coincide with the continuous extensions of the directional derivatives of f
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on int(AP). From that we derive that is C1 and by induction the
assertion follows. 0

Remark 5.3. - With the differentiability concept of Definition 5.1 we
obtain in particular a natural concept of smooth singular chains, cycles etc.
We write Cp(Y) for the group of smooth singular chains in the manifold
Y, Zp(Y) for the group of smooth singular cycles, and

for the boundary map which is given on a smooth singular simplex

where

The maps fj := f o aj, j - 0,..., p are called the faces of the smooth
singular simplex f and the sets Ap := are called the faces of AP.

If w is a smooth 3-valued p-form on Y, then for each smooth singular
simplex ~: AP - Y we define the integral

where a*w is a smooth p-form on int(AP) which extends continuously to the
boundary. By linear extension we define the integral of w over any smooth
singular p-chain, and it is easy to verify that in this context Stoke’s Theorem

([Wa83, p. 144]) holds. This formula extends directly to oriented simplicial
complexes E which are triangulations of compact manifolds with boundary
and piecewise smooth maps cr: E 2013~ Y. 0

LEMMA 5.4. - If G is a Lie group and E a finite simplicial complex,
then the group (7~(E, G) is a Lie group with respect to pointwise multi-
plication and Lie algebra 

Proof. This follows with the same argument as for the groups
COO(M, G), where M is a compact manifold (cf. [GI01b] and Definition
A.3.5). D
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For a simplicial complex E we write ~(j) for the j-th barycentric
subdivision of E. Note that for a manifold Y we have a natural inclusion

which in general is not surjective because the requirement of piecewise
smoothness for a function E(l) -&#x3E; Y is weaker than for a function £ - Y.

If £ = O1 - [0, 1] is the unit interval, then a smooth function on
= [0, ~] U [~, 1] need not be smooth around -1
In the following lemma we have to consider the barycentric subdivi-

sion of AP because we otherwise run into problems if we want to extend a

piecewise smooth map on the boundary to the interior.

LEMMA 5.5. - Let Y be a locally convex space. Then each piecewise
smooth function Y extends to a piecewise smooth function

Proof. The key idea of the proof is the following. If f : Op =
(e1, ... , ep) - Y is a smooth map, then we obtain for every yo E Y a
natural extension of f to a smooth map Y by

Moreover, for each face A~, 0 ~ ,y ~ p - l, given by Xj+1 = 0, the extension
of the restriction of f to OP n AP coincides with the restriction of E( f )
to the face Ap of AP. This implies that if we have a piecewise smooth
function on a0P and we apply the preceding extension procedure to each
simplex of the first barycentric subdivision of AP, then we obtain
a collection of smooth functions on all simplices in matching to a
piecewise smooth function on the simplicial complex Here we need

only that the function f on is piecewise smooth on (,9AP) (1) El

PROPOSITION 5.6. - If G is a simply connected Lie group, then the
restriction map

is surjective.

Proof. Lemma 5.5 implies that if f E H : = G) is sufh-
ciently close to the constant function 1 with respect to the compact open
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topology, then f E im(R). Therefore the image of the group homomor-
phism R is a subgroup of H which is open with respect to the compact
open topology.

We write | £ ) for the topological space underlying a simplicial complex
E. Topologically we then have I = la~ 21 ~ S’. Therefore the

density of in C(S, G) (Lemma A.3.6) implies in particular
that C’ (S’, G) is dense in H with respect to the compact open topology.
Now the connectedness of H follows from the connectedness of G),
which in turn follows from

(Theorem A.3.7).
Note that in the preceding proof we cannot argue directly by the

density of the connected subgroup G) in H because the former
carries the subgroup topology inherited from H and is complete, hence
closed.

Construction of the period homomorphism.

Now we return to the context where G is a connected Lie group with

Lie algebra g, 3 is an s.c.l.c. space and w E (g, 3). In this subsection we
construct the corresponding period homomorphism per~:7T2(~) 2013~ 3.

If f : ~ -~ G is a function from a topological space E into a group G,
then the closure of the set f -1 (G B ~1 ~) is called the support of f.

LEMMA 5.7. - If E is an oriented simplicial complex which is a

triangulation = S2 , and Q E SZ2 (G, ~) a closed 3-valued 2-form,
then the map

is locally constant and a group homomorphism.

Proof. - As the group Coo (S2 , G) is dense in C(S2 , G) with respect
to the compact open topology (Lemma A.3.6), it is in particular dense in

C’P’~(E, G) with respect to the compact open topology.
Let U C g be a convex open 0-neighborhood for which there exists a

diffeomorphism p: U - G with p(0) = 1. Suppose that 7/,o- E G)
satisfy ~) C cp(U). Then there exists a piecewise smooth map

with
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Here the piecewise smoothness of a map on E x [0, 1] refers to any simplicial
decomposition of E x ~0,1~ refining the decomposition into the sets S’ x ~0,1},
where ,S’ is a simplex in E. To verify this assertion, we first define a map

and then F(x, t) := 71(x)F’(x, t). Now Stoke’s Theorem implies that

It follows in particular that §£rq is locally constant, even in the compact
open topology.

Next we show that FerQ is a group homomorphism. First we observe
that each a E Cp (~2, G) lies in the same connected component of a smooth
map supported by the (opposite) hemisphere of a base point xo of ~2. Let
0’1,0’2 E Cp (~, G) . Then the connected components of OJ contain elements
(j whose supports are contained in disjoint hemispheres of S2. We therefore
obtain

DEFINITION 5.8. - Now we define for a closed 3-valued 2-form 0 on
G the period homomorphism

by factorization of per 0 through the quotient map C°° (S2 , G) ---&#x3E; 7r2 (G) ^--’
(cf. Theorem A.3. 7).

The group Hq := im(perq ) C 3 is called the period group of Q.

For the special case where Q is a left invariant 3-valued 2-form on G
with Qi = w, corresponding to w E 3), we also write perw := peru
and Hv D

If G is a simply connected Lie group, then the singular homology
group H2(G) is isomorphic to (Remark A.1.4), so that the period
homomorphism defines in particular a singular cohomology class.
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Remark 5.9. - (a) The preceding construction is not restricted to
degree 2. It provides for any closed p-form SZ E QP(G, 3) a period homo-
morphism -~ 3. The extension to a singular cohomology class in

would require refined approximation argu-
ments connecting singular and smooth singular homology of G.

(b) The period homomorphism depends linearly on
w. If w is a coboundary, i.e., w = dcx for some a E Lin(g, 3), then the left
invariant 1-form A E with satisfies dA = SZ by Lemma
3.10. Hence Stoke’s Theorem implies that perw - 0, and hence that per~
only depends on the Lie algebra cohomology class of w. 0

The connecting homomorphism and the period map.

In this subsection we will relate the period homomorphism of a Lie

algebra cocycle to the connecting homomorphism b: ~r2 (G) -~ 7r1 (Z) from
the long exact homotopy sequence of the bundle Z ~ G - G provided
that such a central Lie group extension exists.

DEFINITION 5.10. We recall the definition of relative homotopy
groups. Let := [0, l]n denote the n-dimensional cube. Then the boundary

of I’ can be wri tten as U In-1, where is called the initial

face and is the union of all other faces.

Let X be a topological space, A C X a subspace, and xo E A. A map

is a continuous map /:7~ -~ X satisfying C A and f (~In-1) _
We write Fn (X, A, xo) for the set of all such maps and 7rn(X, A, xo)

for the homotopy classes of such maps, i.e., the arc-components of the

topological space Fn (X, A, xo) endowed with the compact open topology
(cf. [Ste51J). Likewise we define the space Fn(x,xo) :== F n (X, 
and 7rn (X, xo) = 7rn (X, xo). We have a canonical map

Let q: G - G be an extension of Lie groups with kernel Z ~ (Z),
where 3 is a s.c.l.c. space and q has a smooth local section. For the following
result we do not have to assume that Z is central in G. Then q defines in
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particular the structure of a Z-principal bundle on G, so that we have a
natural homomorphism

where the map

is an isomorphism Cor. 17.2]).
Let 0 E SZ1 (G, ~) a 1-form with the property that for each g E G the

orbit map satisfies qg9 = Oz, where 9Z E is

the canonical invariant 1-form on Z with = id~ . In the language of
principal bundles, this means that 0 is a connection 1-form for the principal
Z-bundle G - G. Further let Q E SZ2(G, ~) be the corresponding curvature
form, i.e., -dO.

For the proof of Proposition 5.11 below we also observe that for

q E C°° (~1, Z) we have a natural identification

PROPOSITION 5.1 l. b 

Proof. Let E Jr2(G) (Definition 5.10) and 1 E C~(9A~,Z)
a piecewise smooth representative of ~([7]) in 7r1 (Z). The long exact
homotopy sequence of the bundle G - G implies that the image of
[q] in is trivial, so that Proposition V.6 implies the existence of

f E G) with f laA2 = q. Now (qo f )(a02) _ fll shows that qo f
represents an element of corresponding to the class of f in Z)
via q*.

According to the long exact homotopy sequence of the principal Z-
bundle G - G, the difference between [a] and [q o f] in 7r2 (G) lies in the
image of Hence there exists a smooth base point preserving map
h: S2 - G with ~~~ = [q o f] + [q o h] (Theorem A.3.7). We may assume
that h is constant in a neighborhood of the base point, so that we can view
it also as a smooth map h : 02 -~ G with h(a02 ) _ ~ 1 ~ which is constant
on a neighborhood of the boundary. Now - [q o (h ~ f )~, so that, after
replacing f by h-1 . f, we may assume that [r] = [q o f] .
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We now have

where we use (5.1) for the next to last equality. This completes the
proof. 0

Remark 5.12. - (a) We consider the special case of Proposition 5.11,
where q: G - G is a central Z-extension corresponding to the Lie algebra
cocycle c,~ C Z~ (g, ~) in the sense g ov 3. Let 0 be the left

invariant 2-form on G with SZ1 = wand p~ : g ^--’ g EBw 3 ---+ 3 the projection
onto 3. Further let 9 denote the left invariant 3-valued 1-form on G with
()1 = p~ . Then the left invariant 2-form is exact with - -d9

because -dpJ((x,z),(x’,z’)) = p~ (~(x, z), (x’, z’)~) = c.~(x, x’). Therefore
Proposition 5.11 implies that per, - -6.

(b) Let Z - G ~ G be an extension of connected Lie groups and
assume that Z is connected and abelian as above. In view of 

Jr2(3) = 1, the long exact homotopy sequence of this bundle leads to an
exact sequence

and therefore to

This implies that

and

These relations show how the period homomorphism controls how the first
two homotopy groups of G and G are related. In particular we see that
7T2(G) is smaller than ~r2 (G) . D

Remark 5.13. - We have just seen that every central extension of
G by T defines a homomorphism 7r2 (G) ---+ ~ Z. Let be the

classifying space of For topological spaces X and Y we write [X, Y] for
the set of homotopy classes of continuous maps f : X - Y. Since T is an

Eilenberg-MacLane space of type K(7~,1), we have for each paracompact
locally contractible topological group G natural isomorphisms
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because for these spaces Cech and singular cohomology are isomorphic
(cf. [Hub61], [Br97, p. 184]). If G is simply connected, we thus obtain an
isomorphism

showing that each homomorphism b: ~r2 (G) -~ is the connecting
homomorphism of a principal T-bundle T ---* G- G (Section 4.4 in
[tD91]), but it corresponds to a central extension of Lie groups if and only
if it is the period homomorphism of a left invariant closed 2-form on G. 0

6. From Lie algebra cocycles to group cocycles.

In this section we assume that G is a connected simply connected Lie
group and h an s.c.l.c. space. Let cv E Zc2 -1, C 3 the corresponding
period group (Definition 5.8), and consider the quotient group Z :_ 3 /Hv
with the quotient map qz: 3 -~ Z. If IIw is discrete, then Z carries a natural
Lie group structure. The main result of this section is the existence of a

locally smooth group cocycle f : G x G - Z corresponding to the Lie algebra
cocycle w. The construction in this section was inspired by the beautiful
idea in [Est54] to obtain group cocycles by integrating 2-forms over suitable
triangles.

For g E G we choose a smooth path ~0,1~ -~ G from 1 to g. We
thus obtain a left invariant system of smooth arcs ag,h := from

g to h, where = gx denotes left translation. For g, h, u E G we then
obtain a singular smooth cycle

which corresponds to the piecewise smooth map

According to Proposition 5.6, each map can be obtained as the

restriction of a piecewise smooth map ~: 0~1~ -&#x3E; G. Let - G be

another piecewise smooth map with the same boundary values as ~. We
claim that L, Q E Hv. In fact, we consider the sphere S2 as an
oriented simplicial complex E obtained by glueing two copies D and D’ of
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A 2along their boundary, where the inclusion of D is orientation preserving
and the inclusion on D’ reverses orientation. Then a and as’ combine to a

piecewise smooth map ~/: E 2013~ G and q IDI _ ~’, so that we
get with Lemma 5.7,

We thus obtain a well-defined map

where a E G) is a piecewise smooth map whose boundary values
coincide with 

LEMMA 6.1. - The function

is a group cocycle.

Proof. First we show that for g, h E G we have

and

If g = h or h = u, then we can choose the map ~: ~2 ---+ G extending 
in such a way that rk(da) z 1 in every point, so that a*O == 0. In particular
we obtain F(g, h, u) = 0 in these cases.

From we immediately obtain

i.e., that F is a left invariant function on G3.

Let 03 C R3 be the standard 3-simplex. Then we define a piecewise
smooth map -y of its I-skeleton to G by

and

As G is simply connected, we obtain with Proposition V.6 for each face

A3, j = 0, ... , of A3 a piecewise smooth map -yj of the first barycentric
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subdivision to G extending the given map on the I-skeleton. These maps
combine to a piecewise smooth map ~: (9A~)~) - G. Modulo the period
group 11~ we now have

Since f Q E this proves that f is a group cocycle. D

In the next lemma we will see that for an appropriate choice of paths
from 1 to group elements close to 1 the cocycle f will be smooth in an

identity neighborhood.

LEMMA 6.2. - Let U C g be an open convex 0-neighborhood and
U --~ G a chart of G with ~p(o) - 1 and idg. We then define

the arcs 1, cp(x) by := Let V C U be an open convex 0-

neighborhood with C p(U) and define x * y : 
for x, y E V. If we define ~p o with

then the function

is smooth with, I

Proof. First we note that the function

is smooth. We consider the cycle

The arc connecting x to x * ~ is given by s H x * sy, so that we may define

ux,y :== cP o with as above. Then

and
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implies that fv is a smooth function in V x V.

The map 1: (X, y) ~ 1x,y satisfies

In particular we obtain 0) = fv (0, y) = 0. Therefore the second
order Taylor polynomial

of fv in (o, 0) is given by

with the convention for d2 Iv from (4.1 ) .
Next we observe that (1) implies that and vanish in

(o, 0) . Therefore the chain rule for Taylor expansions and (1) imply that
for each pair (t, s) the second order term of

is given by

and eventually

COROLLARY 6.3. - Suppose that IIw is discrete and construct for

w E Zj(g, 3) the group cocycle f E Z2 (G, Z) as above. If the paths for

g E p(U) are chosen as in Lemma 6.2, then f E Z) with D( f ) = w.

Proof. In the notation of Lemma 6.2 we have for x, y E V the

relation
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so that f is smooth on p(V) x and further

Remark 6.4 (Changing cocycles). - Let A E Lin(g, 3) and cv’ (x, y) :=
~) 2013 A([~, y]). Then the corresponding left invariant 2-form S2’ satisfies

S2’ = Q+dL, where L is the left invariant 1-form with L1 = A. We therefore
obtain per,, = per,, from Remark 5.9(b).

For the corresponding cocycle we have

with

This implies that modulo Hv we have

Hence is a coboundary defined by the function

In local coordinates we have with the paths chosen as in Lemma 6.2 the
formula

which shows that o is smooth in an identity neighborhood and satisfies

~(1) = 0. D

7. The exact sequence for smooth central extensions.

In this section we eventually turn to the exact sequence for central
extensions of Lie groups. Throughout this section G will denote a connected
Lie group and Z satisfies Zo ~ 3/r, where r C 3 is a discrete subgroup in
the s.c.l.c. space 3. We write qz: 3 -~ Zo for the quotient map. The main
result of this section is the exact sequence described in the introduction.
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In particular we will see that a Lie algebra cocycle w integrates to a
smooth central extension of a simply connected Lie group if and only if
the corresponding period group is discrete (Theorem 7.9).

We start with the definition of the maps showing up in the exact
sequence.

DEFINITION 7. 1. - (a) Let -y E Hom(7r1(G),Z). Weidentify7r1(G)
wi th ker qG C G, where qG : G -~ G is the universal covering homomor-
phism. Then

is a discrete central subgroup of G x Z, so that G :== (G x 
carries a natural Lie group structure which is a Z-principal bundle over G:
the quotient map 7r: G ---+ G is given by Jr([g, t]) := qG (g), and its kernel
coincides with x Z)/r(~y-1 ) ~--" Z. We write

for the group homomorphism defined this way If E stands for the central
extension 7r1 (G) - 6 --+~ G, this is the homomorphism E* from Remarks
4.5 and 1.3.

(b) We recall the map

from Section 4, which is given on the level of cocycles by

where Z) is written on a sufficiently small identity neighborhood
with a smooth function U x U ---+ 3 (Lemma 4.6).

The image of D are those cohomology classes [w] E H~ (g, ~ ) for which
there exists a Lie group G which is a Z-extension of G. If G is simply
connected, then we call the elements E im D and the corresponding Lie
algebras ~ integrable.

(c) Let E and write SZ for the 3-valued left invariant
closed 2-forrn on G with SZ1 = w. Further let perw: 7r2(G) --+ 3 be the

period homomorphism (Definition 5.8). We define
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Now let X E g and consider the corresponding right invariant vector
field Xr on G. Then is a closed h-valued 1-form whose cohomology
class only depends on the cohomology class of w in H~ (g, ~ ) (Lemma 3.11 ) .
For each piecewise differentiable loop -y: ~0,1~ -~ G with q(0) = 1 we now
put

(Theorem 3.6). It is clear that P2 ([w]) can be viewed as a homomorphism
7r1 (G) - Lin(g, 3). We claim that its range consists of continuous linear
maps. In fact, for each piecewise differentiable loop ~: ~0,1~ ~ G we have

where qi(t) denotes the left logarithmic
derivative of q in t. Since the integrand is a continuous map [0, 1] x g ---+ 3,
the integral is a continuous map g - 3. We combine these two maps to a
group homomorphism

First we take a closer look at the homomorphism C.

LEMMA 7.2. - Let G and G be connected Lie groups, q: G - G a
covering homomorphism with kernel Q and Zo ^--’ Then Q is a discrete
central subgroup of G and q induces an exact sequence

If, in addition, the group Z is connected, then q* is surjective.

Proof. The kernel Q of q is a discrete normal subgroup of the
connected group G, hence central. In view of Remark 4.5, the central
extension q: G ---+ G leads to the exact sequence

because C coincides with the map E* in Theorem 1.5. This means in

particular that C is a group homomorphism and that the range of E*
consists entirely of Lie group extensions.
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If the group Z is connected, then Z ~ 3/F is divisible, so that

Extab (Q, Z) = 0. Therefore q* is surjective. 0

Remark 7.3.2013 If ~ is topologically perfect, i.e., its commutator

algebra is dense, then each Lie algebra homomorphism to an abelian Lie
algebra is trivial. Since G is connected, it follows from Lemma 3.14 that

Hom(G, Z) = 0. In the setting of Lemma 7.2, we therefore obtain for
abelian groups Z the short exact sequence

PROPOSITION 7.4. - For every connected Lie group G and 3/r
we have ker D = im C.

Proof.- ":2": Let Z and consider the corresponding
central extension

The map G x Z - G is a covering with kernel r( f -1) isomorphic to (G).
Hence g, the Lie algebra of G, is isomorphic to g x 3, showing that the

corresponding Lie algebra extension g- --+ g is trivial. Thus im C C ker D.

"C" : Suppose that D(E) - 0 holds for the central extension

E: Z G~G. Then the Lie algebra extension splits, so that
we have a continuous Lie algebra homomorphism A:~ 2013~ 3 extending the
identity on 3 C g . Let qõ: G~ ---+ G denote a universal covering of G. In view
of Theorem 3.16, there exists a unique Lie group homomorphism Sp: G~ 2013~
with A. On the other hand the embedding r~Z Zo -~ G lifts to a
homomorphism 1]j: J ~ GO of the universal covering groups with = id~ .
We fix a smooth local section ~: U - G, where U C G is an open symmetric
1-neighborhood,. In addition, we assume that there exists a smooth local
section 7:~7 2013~ G#, where U C G is an open 1-neighborhood containing
a(U). Then a: == â o a : U --+ GO is a smooth map with

Let := êi(x )rh ((p (a (x))) - 1. Then U - GO also is a smooth section

and, in addition, im(ai ) C ker ~p. Since q-1(U) == U x Z,
the group GO contains a 1-neighborhood of the form
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where U, C h is an open 0-neighborhood. Then implies
that kerp n U = Let x, y E U with E U and cri(a;)cri(?/) e U.
Then E = a1(U) and == xy

leads to = Now Proposition 2.6 implies that 

(G x Z)IF(--1) for some y e Hom(7!-i(C), Z). D

Remark 7.5. - In Proposition 7.4 we have determined the kernel of
D as the image of C. On the other hand we have the exact sequence

(Lemma 7.2). Since G and G have the same Lie algebra, we also have a
homomorphism

which is injective because 7r, (G) is trivial (Proposition 7.4). It is easy to

see that D o qG = D, showing that im C = ker D = ker qê. D

It is interesting that, in spite of the fact that not every central
extension 9 == 9 ov 3 corresponds to a central group extension of a simply
connected group G, Proposition 7.6 below implies that we can always
construct the adjoint action of G.

It is fairly easy to see that to each continuous Lie algebra module
g x V - V, V a locally convex space, there exists at most one smooth
representation of G on V for which the Lie algebra action is the derived
representation. In the finite-dimensional case the simple connectedness of
G suffices to ensure the existence, but for infinite-dimensional spaces V
the group GL(V) is not a Lie group, so that one cannot expect that Lie
algebra representations integrate to representations of the corresponding
simply connected groups. A simple example where no group representation
exists is given by the action of the Lie algebra g = RX of G = R on
the space V := by X. f = f’. This example shows that the
problems come from the bad structure of the group GL(V) and not from
the group G.

PROPOSITION 7.6. - Let G be a connected Lie group, 3 an s.c.l.c.

space, and w E 3). Then the adjoint action of g on 9 : := g EBw 3
integrates to a smooth action Ad- of G if and only if P2 ( c, ) = 0. Ing

this case the corresponding cocycle can be obtained as follows. For each
X E g let fx c be the unique function with dfx = i(Xr).O and
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Then

defines a smooth 1-cocycle with

Proof. First we assume that P2 ( ~cv~ ) = 0, which means that for
each X C g the closed 1-form on G is exact, so that the functions

ix, X E g, exist. We have to show that for 91, 92 E G and X E g we have

which means that

for all G, and this is equivalent to Ix (9291) == f x (g2 ) + f 92 1.x (91 )
for all 91, 92 E G, which in turn means that f x o ~92 - Ix(92) + 
In 1 both functions have the same value /x(~2)- Hence it suffices to show
that both have the same differential. This follows from

where the last equality is a consequence of

We further have

This proves that 9 is a 1-cocycle.

Now we show that 0 is smooth. Since 9 is linear in the second

argument and a cocycle, it suffices to verify this in a neighborhood of

(1, 0) E G x g. Let U C G be an open 1-neighborhood for which there
exists a chart p: V - U with p(0) = 1, where V C g is a an open star-
shaped neighborhood of 0. Then for each x E V and X E g we have
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and this formula shows that the function V x g - g, (.r,X) ’2013~ 
is smooth. We conclude that 0 is a smooth cocycle for the adjoint action,
and therefore

defines a smooth action of G on g. The corresponding derived action ad-0
of g is given by

Suppose, conversely, that there exists a smooth action Ad- of G on9

i = g E,, such that the derived action is ad-. Since ad- is an action of gg 0

by derivations on g , it follows by an easy differentiation argument and the
connectedness of G that G acts by automorphisms on g . Let X E g C g and
consider the function f X : G - 3 given by e (g-1, X) = 
where p~: g ~ ~ is the projection onto h along the subspace g x 101. By
assumption we have

Therefore

and therefore dfx = i(Xr).f2. Hence the 1-forms are exact, and
this means that P2([w]) = 0. D

COROLLARY 7.7. - If G is a connected simply connected Lie group
and w E Z,,2 (g, 3), then the adjoint action of g on := g %v 3 integrates to
a smooth action of G. D

o

The following lemma implies im D C ker P.

LEMMA 7.8. - If there exists a Lie group extension Z ~ (? 2013~ G

corresponding to [w] E H;(g,J), then P([w]) = 0.

Proof - First we consider the homomorphism P, ( ~w~ ) ==

qz o per,,: 7r2 (G) -~ Z. We have seen in Remark 5.12(a) that - perw is
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the connecting homomorphism b: ~r2 (G) ~ 7r1 (Z) C 3 in the long exact ho-
motopy sequence of the principal Z-bundle G -~ G. It follows in particular
that im(perw ) C 7r1 (Z) and hence that = 0.

Now we turn to P2 : 7r1(G) --4 Lin(g,3). We write the Lie algebra of G
as i = g EBw 3 with the bracket

Since Z C G is central and G - G is a locally trivial bundle, the adjoint
action of G on g factors to a smooth action Ad- of G on g whose derivedg

action is given by 

In view of Lemma 7.6, the existence of Ad- means that P2([w]) = 0. D
9

The following theorem describes the bridge from the infinitesimal
central extension corresponding to a Lie algebra cocycle to a global central
extension of a Lie group.

THEOREM 7.9 (Integrability Criterion).- Let g be the Lie algebra
of the simply connected Lie group G and [w] E H~ (g, ~). Then there exists
a corresponding smooth central extension of G by some group Z = 31]F if
and only ifim(per~) is a discrete subgroup of 3. If Z, resp., F is given, then
the central extension exists if and only if im(perw ) C h.

Proof. First we assume that the image of per,, is discrete and

contained in the discrete subgroup r. Using Corollary 6.3, we obtain for
Z . a cocycle f E Zs (G, Z) with D( f ) = w. In view of
Proposition 4.2, the corresponding group G := G x f Z carries a natural
Lie group structure such that Z G - G is a smooth central extension.

If, conversely, a smooth central extension of G by Z = 3/r exists,
then Lemma 7.8 implies that im(per~) C h. D

LEMMA 7.10. - If Z is an abelian Lie group with Zo ~--" 3/f, then the
exact sequence

11

splits and Z = Zo x where the group 7ro((Z) is discrete.

Proof. Since the abelian group Zo is divisible, there exists a group
homomorphism



1412

a discrete group, a is continuous, and therefore

LEMMA 7.11. - If P( ~c,~j ) = 0, then there exists a Lie group extension
Z^--,~/r~G-~G with Lie algebra i = g 3.

Proof. Let qG : G - G be the universal covering group. Since
the canonical map 7r2(0) ---+ is an isomorphism (Remark A.1.4),

= 0 and Theorem 7.9 imply the existence of a central extension
Z - such that the Lie algebra of H is g - g ov j. It is clear
that the central subgroup Z C H acts trivially on g by the adjoint action,
so that we obtain an action Ad- of G on g with!g

where 0: G x g ~ ~ is a smooth function. In view of P2([W]) = 0, this action
factors through the universal covering map qc: G ---+ G (Proposition 7.6).
Therefore the subgroup 7r1 (G) C G acts trivially on g, and hence the group
Dz :== qÏl1 (7r1 (G)) C H is central because H is connected (Corollary 3.15).
Now (Dz)o is divisible, so that Lemma 7.10 yields Z x E with a

discrete group E E# 7r1 (G). Therefore G := H/E carries a natural Lie group
structure. The homomorphism qG o qH : H - G has the kernel Dz, hence
factors through a homomorphism q: G -~ G which is a principal bundle
with structure group Z. D

At this point we have all the pieces to obtain the exact sequence, the
main result of this section and the heart of the paper.

THEOREM 7.12 (Exact sequence for central Lie group extensions).
Let G be a connected Lie group, 3 an s.c.1.c. space, r C h a discrete

subgroup, and Z a Lie group with Zo ~ Then the sequence

is exact.

Proof. The exactness in Hom(G, Z) and Hom(G, Z) is trivial.

The exactness in the group Hom(7r, (G), Z) follows from Lemma 7.2, and
Proposition 7.4 yields the exactness in ExtLie (G, Z), so that it remains to
verify the exactness in H~ (g, ~ ) .

For the case where Z is connected, it follows from Lemmas 7.8 and
7.11. If Z is not connected, then Lemma 7.10 implies that Z E£ Zo x Jro (Z) .
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If q: G - G is a central Z-extension, then G /7ro(Z) is a central Zo-extension
with the same Lie algebra because G - is a covering map.
Therefore P o D = 0 follows directly from the case of connected groups
because im(D) C 7~(~, 3) is the same for Z and Zo. To verify ker P C im D,
we first obtain from .P([~]) == 0 a central Zo-extension G - G (Lemma
7.11), and then G x G is a central Z-extension with the same Lie

algebra. D

The following proposition clarifies how central extensions by non-
connected groups can be reduced to central extensions by discrete and
connected groups. For finite-dimensional groups G Proposition 7.13 can be
found as Theorem 3.4 in [Ho5l, II].

PROPOSITION 7.13. - Ifr C h is a discrete subgroup and Z an abelian
Lie group with Zo ~ 3 /r, then for each connected Lie group G we have

Proof. First we obtain from Lemma 7.10 that

Using this product structure, one easily verifies that

holds for every Lie group G. For the discrete group ZIZO Theorem 7.12
shows that

because Hom(G, Z/Zo ) is trivial. 0

Remark 7.14. - If Z - G -P G is a central extension of G by
the connected group Z ~ 3 /r and Z - H ---+t G is the pull-back to the
universal covering group G of G, then H - G is still a central extension
of G because its kernel acts trivially on the Lie algebra g. The kernel
of this action is isomorphic to Z x (Lemma 7.10). In terms of
Proposition 7.13, this corresponds to replacing the extension E E Ext (G, Z)
by the element

COROLLARY 7.15. - Let G be a connected Lie group and Zo ~ 3/r
for a discrete subgroup F C 3. Then the following assertions hold:
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(i) If G is simply connected, then the sequence

is exact.

(ii) If Z is connected, then the sequence

is exact, were assigns to a central Z-extension of G the homomorphism
perw: 7r2( G) ---+ 3 and w E Z~ (g, ~) is a corresponding Lie algebra cocycle.

Proof - (i) follows directly from Theorem 7.12.

(ii) Since G is connected, we have Hom(G, r) = 0, so that, in view of
the second part of Remark 4.5, it only remains to verify the exactness at

ExtLie( G, Z).

Let 3 ~ G - G be a central 3-extension of G and w E Z~ (g, ~ ) a
corresponding Lie algebra cocycle. Then per~ = 0 (Theorem 7.9), and
this shows that ( o (qZ ) * - 0. If, conversely, E: Z ~ G 2013~ G is a

central extension with (((E) - per, - 0, then Theorem 7.12 implies that
E = holds for a central 3-extension E of G because P2 ( ~W~ ) = 0
follows from the existence of the central extension E. D

and

In particular P, ([w]) and P2 ([w]) factor through homomorphisms of the
rational homotopy groups

Proof. The first assertion follows from the fact that the range
of the homomorphism P2 ( ~c,~~ ) is a vector space. Similarly we see that

tor(Jr2 (G)) C ker perw, and this implies that tor(Jr2 (G)) C ker P1 (~c,~~). The
second assertion follows from the fact that for an abelian group A the kernel

A of the natural map A --+ A &#x26; Q, a ~-* a 0 1 coincides with tor(A). D

Example 7.17. - Suppose that dim G  oo. Then is trivial (cf.
[God71] ) , so that we obtain from Theorem 7.12 a simpler exact sequence
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(cf. [Ne96]). If, in addition, G is simply connected, then we obtain an
isomorphism

8. Central extensions with global smooth sections.

In this subsection we discuss the existence of a smooth cross section

for a central Lie group extension Z - G which is equivalent to the
existence of a smooth global cocycle f : G x G - Z with G ~ G x f Z.
Moreover, we will show that for simply connected groups, it is equivalent
to the exactness of the left invariant 2-form SZ on G.

We shall see below that both conditions in the following proposition
are also necessary for the existence of a smooth global cocycle. The
vanishing of P2([w]) is already necessary for the existence of the central
extension, and (1) corresponds to the existence of a smooth global section.

PROPOSITION 8.1 (Cartan’s construction). - Let G be a connected
Lie group, 3 an s.c.1.c. space, w E Z~ (g, ~ ) a continuous 2-cocycle, and
SZ E the corresponding left invariant 2-form on G with 521 - w.
We assume that

(1) S2 = dO for some 9 E 01 (G, 3) and

Then the product manifold G := G x h carries a Lie group structure
which is given by a smooth 2-cocycle f E Z2 (G, h) via

The Lie algebra of this group is isomorphic to g 

Proof. First we note that (2) means that for each X E g the 1-
form is exact (Theorem 3.6). For the natural left action of G on G
given by a(g, x) = gx, we have ~(X ) _ -X, and therefore

implies the exactness of for each X E g. Using Lemma A.2.6, we now
see that the 1-forms are exact. Hence there exists for each g E G a

unique fg E COO(G’ð) with fg (1) = 0 and dfg = Ag9 - 0.
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Now we show that f (g, h) . fg (h) is a 3-valued 2-cocycle. Our
construction shows that

For g, h E G the functions fg o Ah and fgh satisfy

Therefore the connectedness of G implies because

both sides have the same differential and the same value in 1. This leads

to

Moreover, the concrete local formula for fg in the Poincar6 Lemma
and the smooth dependence of the integral on g imply that f is smooth on
a neighborhood of ( 1,1 ) . We write the cocycle condition as

For g fixed, this function is smooth as a function of the pair (h, u) in a
neighborhood of ( 1,1 ) . This implies that f is smooth on a neighborhood
of the points (g,1 ), g E G. Fixing g and u shows that there exists a 1-
neighborhood V C G such that the functions f (, u), u E V, are smooth
in a neighborhood of g. Since g E G was arbitrary, we conclude that the
functions f (. 7 U) , u E V, are smooth. Now

shows that the same holds for the functions f ( ., x), x E V2, and iterating
this process, using G =UIIEN Vn, we derive that all functions f (., x), x E G,
are smooth. Finally we conclude that the function

is smooth in a neighborhood of each point (go,1), hence that f is smooth
in each point (go, uo), and this proves that f is smooth on G x G. We
therefore obtain on the space 6 := G x 3 a Lie group structure with the
multiplication given by

and Lemma 4.6 implies that the corresponding Lie bracket is given by
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Now we relate this formula to the Lie algebra cocycle w. The relation
leads to

where Y denotes the left invariant vector field Y. Taking
second derivatives, we further obtain for X E g:

so that

Since this cocycle is equivalent to w, the assertion follows. 0

COROLLARY 8.2. - If G is simply connected and SZ is exact, then
there exists a smooth cocycle f : G x G - 3, so that Lie

group with Lie algebra i = g ov 3.
Proof - Since 7r1(G) is trivial, the condition P2 ( ~c,~~ ) = 0 is auto-

matically satisfied. 0

Remark 8.3. - For finite-dimensional groups, the construction de-

scribed in Proposition 8.2 is due to E. Cartan, who used it to construct a
central extension of a simply connected finite-dimensional Lie group G by
the group 3. Since in this case

and

(cf. [God 71]), the requirements of the construction are satisfied for every
Lie algebra cocycle c,~ E Z2 (g, ~ ) .

The construction can in particular be found in the survey article of
Tuynman and Wiegerinck [TW87] (see also [Tu95], [Go86] and [Ca52b]).
Actually E. Cartan gave three proofs for Lie’s Third Theorem ([Ca52a],
[Ca52b] and [Ca52c]), where [Ca52a] and [Ca52c] rely on splitting of a
Levi subalgebra and hence reducing the problem to the semisimple and the
solvable case, but the second one is geometric (in the spirit of the argument
in Example 7.17) and uses = 0 for a simply connected Lie group
G (see also [Est88]). D

PROPOSITION 8.4. - For a connected Lie group G and w E 

the following are equivalent:
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(1) There exists a corresponding smooth central extension q: G --+ G
of G by Z = 3 /r with a smooth global section.

(2) The left invariant 2-form Q on G with 01 == w is exact and

Proof. (2) ~ (1) is Proposition 8.l.

(1) ~ (2): First P2 ([w]) - 0 follows from Theorem 7.12. Let ~: G ~ G
be a smooth section and a E Q’(6, 3) be the left invariant 3-valued 1-form
with ~x1 = p, the linear projection EBw 3 ---+ 3. Then -q*Q
follows from

and the left invariance of a and S2. Then (J"*a is a 3-valued 1-form on G
with

so that S2 is exact. D

PROPOSITION 8.5. - (a) If a smooth central extension Z = ~/r -~ 
G~G corresponding to a Lie algebra cocycle w has a smootll section,
then the following assertions hold:

(1) the left-invariant 2-form 0 E Q2 (G, h) with SZ 1 w is exact.

(2) per~, = 0.

(3) The natural homomorphism has a homo-

morphic section.

If, conversely, (1)-(3) are satisfied, and G is smoothly paracompact,
then a smooth section exists.

Proof (see [TW87, Prop. 4.14] for the finite-dimensional case).
"~" The exactness of Q follows from Proposition 8.4. For each piecewise
smooth map -y: S2 -~ G with respect to a triangulation of S2 we then have

Therefore per,, vanishes.

Let a : G 2013~ G be a smooth section, so that q o a = idG. Then the
induced homomorphisms of the fundamental groups satisfy 7r1 (q) o 7r, (a) =
id7Tl (G) , and the assertion follows.
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"Ç:" Now we assume (1)-(3). Since Q is exact and P2([w]) = 0 by
Theorem 7.12, Corollary 8.2 implies the existence of a central extension

G x f31 j of G by j which can be written as a product and fJ1: G x G ---+ j is a
smooth group cocycle. Passing to a different but cohomologous Lie algebra
cocycle w, we may assume that = w. Let fh .- f1 o (qG x qG) and
f : qz denote the corresponding smooth cocycles with values in 3 and
Z on the universal covering group G of G. Then G~ := G x f Z is a central
extension of G by Z corresponding to wand with a global smooth section.
Since the pull-back of the central extension G -~ G to G corresponds to
the same Lie algebra cocycle, both extensions are equivalent (Corollary
7.15 (i) ) . Therefore we have a covering homomorphism x f Z - G
with q o cp = qG. In particular the universal covering group of G is

isomorphic to G j. We identify the group with the kernel of

the natural homomorphism qG: G x f3 j -~ G. Then C x ~,
and since f3 is pulled back from a cocycle on G, it is trivial on so

that 7r1 (G) x h is a product subgroup of G j. The natural projection
--~ is simply the projection onto the first component in

x h and contained in Therefore the image
of 7r1 (G) under id x qz in 1f1 (G) x Z is isomorphic to Hence there

exists a group homomorphism ~y: 7r1 (G) ---+ Z with

We conclude that

Now our assumption (3) implies the existence of a group homomor-
phism ~j: such that

This means that qz = q, i.e., -y lifts to a homomorphisms
Therefore

Since the central 3-extension of G given by /f( ~3) has convex fibers,
the fact that G is smoothly paracompact implies that it has a smooth global
section. Therefore q: G --~ G also has a smooth global section. D

COROLLARY 8.6. - Suppose that G is defined by a homomorphism
~: 7r1 (G) ---+ and that G is smoothly paracompact. Then G -~ G
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has a smooth section if and only if q has a lift to a homomorphism

Proof. This is the special case of Proposition 8.5, where ~c~~ = 0
(Theorem 7.12). As

we have

where the natural homomorphism to 7Ti(G) is the projection onto the first
factor. This homomorphism splits if and only q lifts to a homomorphism

3, so that the assertion follows from Proposition 8.5. D

DEFINITION 8.7. - It is also interesting, and was the traditional
way to approach central extensions of finite-dimensional Lie groups by
Hochschild ([Ho51J) to consider only smootll Lie group extensions with
a global smooth cocycle, or, equivalently, with a smooth section.

With the results in this section, we can easily pinpoint the difference
to our approach. Let G, Z be Lie groups, Z abelian, and Z2 (G, Z) C
Z2 (G, Z) the group of smooth cocycles. If f E Z2 (G, Z) is a coboundary,
i.e.,

for a locally smooth function h: G -~ Z, then fixing x in the above formula,
we see that h is smooth in a neighborhood of x, and therefore that h is
smooth. Therefore Z) coincides with the group Z)
of those coboundaries defined by globally smooth functions h: G - Z.
Therefore we have a natural inclusion

The group classifies the smooth central extensions of G by Z
with global smooth sections.

Since every smooth cocycle f E Z) has values in the identity
component Zo of Z, it is no loss of generality to consider only connected
groups Z. 0

The following result is the version of the exact sequence in Theorem
7.12 for the setting with globally smooth cocycles.
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THEOREM 8.8. - Let G be a smoothly paracompact connected Lie
group, 3 an s.c.l.c. space, r C 3 a discrete subgroup, and Z !2--- 3/f. Then
the sequence

is exact, where Cg(q) = C(qZ o 1), - [0] is the cohomology
class of the corresponding left invariant 2-form and (P9 ) 2 ( ~c,~J ) = P2 ( ~cvJ ) ~
Moreover, the sequence

with ~( ~ f ~ ) - [qZ 0 f] and Cr = C IHom(7Tl (C),r) is exact.

Proof. The exactness of (9.3) in H~ (g, ~ ) is Proposition 8.4. In view
of Theorem 7.12, the exactness in Hg2,(G, Z) follows from Corollary 8.6.

To show the exactness of (9.4), let f E Z). Then Proposi-
tion 8.4 implies the existence of a smooth cocycle f3 E Z;s(G,3) with
D([/]) = in H,2(g,3). From the exactness of (9.3), we derive that
[f] -,q([f3]) C im(TI). Hence q is surjective. Now let f e 
with r~( ~ f ~ ) - 0. Then, in particular ] - 0, so that [ f] ] - with

q C Hom(7r1 (G), 3). Then 0 = 7/([/]) - C(qz o q) implies that 
extends to a homomorphism G - Z. As the group G is simply con-
nected, this homomorphism lifts to a homomorphism /3: G 2013~ 3. Now

C(~y) - C(~y ~ ¡J-1 7ri(G)) = [f], so that we may w.l.o.g. assume that
im(~) C ker qz = 1,, which completes the proof of the exactness of (9.4). D

One can even determine the kernel of the map Cg in Theorem 8.8 as
follows. It is clear that Hom(7r1(G),f) C ker Cg. Let -y E Hom(7r1(G),3)
and write as with the natural map C:Hom(7r1(G),3) --~

H;s(G,3). Then = 0 and the exactness of (9.4) imply C(~y) - C(6)
for 6 E Hom(7r1 (G), F). Hence 18-1 E ker C C ker Cg , and therefore

9. Examples.

In this section we discuss several important classes of examples
which will demonstrate the effectiveness of the long exact sequence for
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the determination of the central extensions of an infinite-dimensional Lie

group G.

Example 9.1. Let H be an infinite-dimensional complex Hilbert
space, B2 (H) the space of Hilbert-Schmidt operators on H, G : - GL2 (H) : =
GL(H) n (1 + B2(H)), and g = B2(H) its Lie algebra. Then

and

(cf. [Pa65] for the separable case and Lemma 3.5 in [Ne98] for the extension
to the general case). Moreover, for each c~ E C) there exists an
operator C E B(H) with

which leads to

(cf. [dlH72, p.141]).
We claim that P([w]) vanishes. Since -X2(G) is trivial, this will

follow from the exactness of the 1-forms for every w E Z2 (g, (C )
(cf. Lemma 3.11). So let w E C) and C E B (H) with w(X, Y) -
tr([X, Y] C) for X, Y E g. We consider the function

and observe that

so that fx is a well-defined smooth function. We have for all Y E g:

Hence dfx = showing that the 1-forms z(Xy.).Q are all exact, and
therefore that P([w]) vanishes.

Since the space [g, g] = B1 (H) of trace class operators is dense in g,
we have Hom(G, Z) - 0 for each abelian Lie group Z, so that the exact
sequence (Theorem 7.12) leads to the short exact sequence
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For the simply connected covering group G we obtain with
7r2 (G) - 1 that

Remark 9.2. - We explain below how central extensions with non-
trivial period homomorphisms can be used to construct non-integrable
central extensions. Similar constructions can be found in [EK64] and in
[DL66, p.147], where the central extension T L-+ U(H) -~ PU(H) is

discussed for an infinite-dimensional Hilbert space.

Suppose that G is a simply connected Lie group and w E R)
with perw =I=- 0. If im(per c.~) is not discrete, then we already have an example
of a non-integrable central extension. Suppose that im(per~) is discrete, so
that we may assume that im(per~) = Z. Let q: G 2013~ G be the corresponding
T-extension of G. We put gi := g e g, G1 := G x G, and

Then im(per,,,) = im(per~) + J2im(perw) is not discrete, so that there
exists no smooth central extension of Gl corresponding to wi (Theorem
7.9).

_ This can also be proved more directly as follows: The group G2 :=
G x G is a central extension of G1 by the two-dimensional torus 1f2 with
period group Z2 C If a central extension Gi - G1 corresponding to
wi would exist, then we could construct a local homomorphism of some
1-neighborhood in G2 to G1, and then use Lemma 2.1 to extend it to

a Lie group homomorphism G2 - G1 with the appropriate differential.
Then the central torus T2 in G2 would be mapped onto the subgroup Zl
corresponding R. So this subgroup would be a quotient of 1f2
modulo a dense wind, which is absurd. 0

Example 9. 3. Let G := Diff + (T) be the group of orientation
preserving diffeomorphisms of the circle T. Then G can be identified with
the group

and the covering homomorphism qG: G 2013~ G is given by q( f ) ( ~x~ ) _ ~ [f (x)],
where [x] - x + Z R/Z. Then ker qG consists of all translations Ta,
a E Z. Moreover, the inclusion map
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is a homotopy equivalence (cf. [Fu86, p. 302]). Note also that G is a convex
set of maps II~ -~ R, so that this group is obviously contractible (cf. [TL99,
6.1]). In particular we have

and

As a consequence, we obtain T. Moreover,

Furthermore we have

([PS86]). To describe the cocycle w, we identify gee with Let iLo E g
denote the invariant vector field on ’lP. Then there exist suitably normalized
eigenvectors Ln, n e Z, for ad Lo in gc such that the cocycle c~ is given by

Therefore the long exact sequence in Theorem 5.13 leads to an exact
sequence

Now one has to show that the standard generator ~c,~~ of Hj (g , R) has trivial
image in the space to get an exact sequence

and hence

(cf. [Se81, Cor. 7.5]). The formula for w implies that it is trivial on on

~(2,C). Therefore 0 for all

X e ~~(2,R): In fact, for g E PSL(2,R), X E ~~(2,R) and Y E g we have

Hence P2 ( ~c~~ ) = 0, and since Pi ([w]) - 0 follows from the triviality of
we have P([w]) = 0. We conclude that there exists a central-

extension Vir of G, which is called the Virasoro group.

For the simply connected covering group G of G we have

This implies in particular that G has a universal central extension
Z, G - G with Z ~ Z x R (cf. [Ne01b] ) . One can realize the group G as
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a central extension of G by R. This is the universal covering group of the
Virasoro group Vir.

Since G is modeled on the nuclear Frechet space g ~ COO(1r, R) it is
a smoothly paracompact manifold ([KM97, 16.10, 27.4]). In particular the
de Rham isomorphism holds for G ([KM97]), and we conclude that

It follows in particular that Q is exact, so that Cartan’s construction

(Proposition 8.4) implies that Vir 9É G as smooth manifolds, and that
it can be defined by a smooth cocycle f : G x G - 1’. Such cocycles are
known explicitly, and one is the famous Bott-Thurston cocycle (cf. [Ro95,
p.237]). D

Example 9.4 (Current groups). - (a) Let t be a finite-dimensional
Lie algebra, M a compact manifold and g : = C’ (M, t) endowed with the
pointwise bracket. Then we assign to every symmetric invariant bilinear
form K on t the continuous Lie algebra cocycle of g with values in the
Frechet space 3 := given by

In [MN01] we calculate the period group for such cocycles and the group
G := C°° (M, K)o, where K is a connected group with Lie algebra t. In

turns out that IIW is always contained in the subspace R). If t is
simple and r, is suitably normalized, then IIW coincides with the discrete
subgroup of all cohomology classes with integral periods. In [MN0 1] we give
more detailed criteria for the discreteness of H,,. Moreover, we show that
in all cases P2 ( ~c,~~ ) vanishes, so that the results of Section 7 lead to central
Lie group extensions of G corresponding to w if and only if IIw is discrete.

(b) Now let G := Q(SU(2)) be the loop group of SU(2), i.e., the group
of continuous base point preserving maps S’ ~ SU(2). Then

and

On the Lie algebra gl := f~(.eu(2)) of the group
one has the natural 2-cocycle

where r~ is the Cartan-Killing form of su (2). This cocycle has no con-
tinuous extension to SZ (.~u (2) ) . It follows from the results in [Ma0l] that
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= 0 for every semisimple compact Lie algebra go. Assuming
this, the exact sequence for central extensions leads to

In contrast to that, the inclusion G1 ~ G is a homotopy equivalence and

which, in view of [EK64, p.28], leads to 0

Remark 9.5 (Central extensions of abelian Lie groups). - (a) Sup-
pose that G is an abelian Lie group with an exponential function exp: g -
G which is a universal covering homomorphism (cf. Remark 3.13). Since
the covering map exp induces an isomorphism of the second homotopy
groups, 7r2(G) ~-- Jr2 (g) is trivial. Hence we have the exact sequence

For abelian Lie algebras the coboundary operator is trivial, so that

H~ (g, ~) - coincides with the space of continuous alternating
bilinear forms g x g - 3. Here the map P is quite simple:

Therefore the condition for the existence of a Lie group extension G ~ G

by Z is that

If this condition is satisfied, then w factors through G x G to a smooth
2-cocycle

We thus obtain a group G which is a covering of the group G x fz Z
with /z = qz o f3.

(b) If span 7r1 (G) is dense in g, then we call G a generalized torus.
Then ker P = 0 implies that D = 0, and therefore that C is surjective, so
that
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If dim G  oo, then span 7r1 (G) == g, and 7r, (G) is a lattice in g. Therefore
leads to

(c) Let g be a locally convex space g and D C g a discrete subgroup.
Then there exists a continuous seminorm p on g with D n p-1 ( ~0, 1]) = 0, 1
showing that the image in the normed space gp := 0/p"~(0) is a discrete
subgroup isomorphic to D. This implies that every discrete subgroup of a
locally convex space is isomorphic to a discrete subgroup of a Banach space.
As has been shown by Sidney ([Si77, p. 983]), countable discrete subgroups
of Banach spaces are free. This implies in particular that discrete subgroups
of separable locally convex spaces are free.

Let E be a vector space and f : D - E a homomorphism of additive
groups. Since every finitely generated subgroup of D is a discrete subgroup
of the vector space it spans, every linear relation Ld Add = 0 implies that

0. Hence f extends to a linear map f: span D - E. Such an
extension need not be continuous if D is not finitely generated. Suppose
that D is countably infinite and that g is a Banach space. Let (en)nEN
be a basis of D as an abelian group. We define f (en) := Then

f extends to a linear map on span D which obviously is not continuous.
We conclude in particular that if G is an infinite-dimensional separable
generalized Banach torus, then

(d) If G is a connected central extension with abelian Lie algebra,
then its universal covering group is the vector space 9 = g x 3, and the
fundamental group 7r1 (G) is defined by an exact sequence

where pg : g -~ g is the projection onto the first factor. In this sense we have
a natural map

If 7Ti(G) is free, then the group on the right hand side is trivial, so that

q vanishes, but if 7r1 (G) is not free, there might be non-trivial classes in
Ext (7r, (G), 7r1 (Z)), and therefore G is non-trivial.

The relation = 0 for 1 E Hom( 7r1 (G), Z) means that -y can be
lifted to a homomorphism %y: ~rl (G) --~ ~ (cf. Lemma 8.5), so that we have
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a ~-extension of G covering the Z-extension G. This extension is trivial if
and only if the homomorphism 7r1 (G) - 3 extends continuously to g which
might not be possible, as we have seen in (c).

(e) Let g be a Banach space, D C 9 a discrete subgroup with
Ext(D, Z) ~ 0 and G := g/D. The exactness of the sequence

(Theorem A.1.4) shows that there exists a homomorphism ~y: which

cannot be lifted to a homomorphism 1: D - R. In view of (d), this implies
that the corresponding abelian extension

has no global continuous section.

We do not know of any example of a discrete subgroup of a Banach
space which is not free (cf. (c)). 0

Example 9.6. - We consider the real Banach space g - co(N, R)
of sequences converging to 0 endowed with the sup-norm. Then Z(N) =
7~~ n co (N, R) is a discrete subgroup spanning a dense subspace, so that
G := ø/Z(N) is a generalized torus with 7~~~~ . Now Remark 9.5(b)
implies that

Remark 9.7. - In [Se81, Prop. 7.4] G. Segal claims that for a con-
nected Lie group G the sequence

is exact, where CT assigns to a Lie algebra cohomology class the de Rham
cohomology class of the corresponding left invariant 2-form and further the
corresponding T-valued singular cohomology class, which can be done with
the de Rham Theorem if G is smoothly paracompact.

A simple example of a group where the sequence (9.1) is not exact

is G = ~2, the two-dimensional torus. As we have seen in Remark 9.5(b),
we have Ext(G,T) = 0, and Remark 9.5(a) shows that R.

Further H2 (G) E£ Z, where the generator is the fundamental cycle (G is an
orientable surface). Hence H., 2 ing (G, T) - T. We conclude that the sequence
above leads to a concrete sequence
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On the other hand the definition of P shows that it is continuous, and this
contradicts Segal’s claim. D

A. Appendix.

A.I. Universal coefficients and abelian groups.

THEOREM A.1.1 (Universal Coefficient Theorem).- Let K be a
complex of free abelian groups Kn and Z be any abelian group. Put

H* (K, Z) H* (Hom(K, Z)). Then for each dimension n there is an exact
sequence

with homomorphisms /3 and a natural in Z and K. This sequence splits by
a homomorphism which is natural in Z but not in K.

The second map a is defined on a cohomology class [I] as follows.
Each n-cocycle of Hom(K, Z) is a homomorphism f : Z vanishing on

8Kn+1, so induces 1*: Z. If f 6g is a coboundary, it vanishes
on cycles, so (6g)* = 0. Now define := /~.

Proof [MacL63, Th. 3.4.1]. D

Remark A.1.2. If the abelian group Z is divisible, then

Extab (B, Z) = 0 for each abelian group B, so that Theorem A.1.1 leads to
an isomorphism Hn (K, Z) ~ Hom (Hn(K), Z) of abelian groups. D

Remark A.1.3. For each topological space X we obtain for the
singular (co)homology and each abelian group Z a short exact sequence

If Z is divisible, then we have

Remark A.1.4. - (a) The Hurewicz-Theorem says that if n &#x3E; 2 and
X is arcwise connected with 0 for 1  i  n (X is (n - 1)-
connected), then
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(cf. [Br93, Cor. 7.10.8]). For n = 1 we have the complementary result that
for any arcwise connected topological space X,

In both cases we obtain

for every abelian group Z.

If n &#x3E; 2, then we obtain with the Hurewicz Theorem = 0,
so that the Universal Coefficient Theorem also shows that

for all abelian groups Z.

(b) If, in addition, M is a smoothly paracompact manifold (cf. [KM97,
Th. 34.7]), then

A.2. Differential forms and vector fields.

Let M be a smooth manifold modeled over a locally convex space.
For a Lie group G we will use the natural multiplication on the tangent
bundle given by T(mG), where mG is the group multiplication on G. We
thus identify G with the subgroup of TG given by the zero section and the
Lie algebra g, as an additive group, with Tl (G) . In the following, 3 will
always denote a sequentially complete locally convex space.

LEMMA A.2.1. - Let G be a connected Lie group acting smoothly on

denote the corresponding homomorphism of Lie algebras. Then yve have an
action of G on V(M) by (g.Y)(p) and the derived

action is given by X. Y : = ~~(X), y~.

Proof. It follows from [NeOla, Prop. 1.18(v)] that 3 is a homomor-
phism of Lie algebras. We have
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where the last term refers to the action of G on TM. Applying g.Y to a
smooth function f, we get

Taking derivatives in g = e in the direction of X E g = leads to

Since locally we have sufficiently many smooth functions to separate vector

fields, we conclude that X.y = [3(X) , y~. D

Remark A. 2.2. - If a: ]a, b[--+ G is a smooth curve on G, then for each
p E M we obtain a smooth curve ap: ]a, b~--~ M given by ap(t) = a(t).p,
and the derivative of this curve is given by

where we use the action Ta of T G on T M (cf. [NeOla, Prop. 1.18]). This
action satisfies

and therefore

We conclude that

where

of a.

is the right logarithmic derivative

For a smooth vector field X on M, a locally convex space h and a

3-valued p-form w E we define the Lie derivative by

LEMMA A.2.3. For w E QP(M,3) and smooth vector fields

X,X1,...,Xp on M we have
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Proof. By definition, we have /~ = d o i(X) + i(X) o d, so that

LEMMA A.2.4. - For w E QP (M, 3), X E g and a smooth curve
a: ] - ~, ~ ~~ G with a (0) = e and cx’ (0) = X we have

where the limit is considered pointwise on p-tuples of tangent vectors of M.

Proof. We consider the situation in local coordinates around a

point q C M. More precisely, we pick an open neighborhood U of q E M
which is diffeomorphic to an open subset of a locally convex space V.
Therefore it suffices to test the equality of both sides on constant vector
fields E V, j = 1,... ,p.

We may w.l.o.g. assume that a(t).q E U for It  E. Then

where refers to the action of G on TM. For each v E V

Lemma A.2.1 further leads to

Taking derivatives in t = 0 in (A.3.1), we now get
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where do stands for the partial derivative of c~ in the first component when
considered locally as a function of p + 1 arguments, p-linear in the last p
variables. The fact that the vector fields Xj are constant leads to

In view of Lemma A.2.3, this proves the assertion. D

LEMMA A.2.5. - Assume that G is connected. For w E Ç2P(M, J) the
following are equivalent:

(1) w is G-invariant.

Proof. "(1) ~ (2)" is an immediate consequence of Lemma A.2.4.

"(2) ~ (1)": Let g E G. Then there exists a smooth path a: [0, 1] -~ G
with = e and = g. We have to show that

In view of - w, it suffices to show that t H is constant.

Let a~.(t) : := a~(~).c~(~)"~ E 9 denote the right logarithmic derivative of a.
Then Lemma A.2.4 implies that

LEMMA A.2.6. - Assume that G is connected. E SZ1 (M, ~) the
following are equivalent:

Proof. Let -y E G). Since we have a natural injection
Hom(7r1(M),J) given by integration over loops (Theo-

rem 3.6), the assertion follows if we show that the condition I, = 

for all g E G is equivalent to I, L&#x26;(x).O - 0 for all X E g. 
f-Y 

-(1) ~ (2): Let a: ~ - s, s[---+ G be a smooth curve with a(0) = e and
a’(0) = -X. Then Lemma A.2.4 yields
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and therefore

(2) # (1): Conversely, we use that

Integrating this relation over ~ and interchanging the order of integration
leads to

because all integrals

vanish. D

A.3. An approximation theorem
for infinite-dimensional manifolds.

The goal of this section is to explain that continuous functions
f : M -~ N, M a finite-dimensional compact manifold and N an infinite-
dimensional manifold, can be approximated by smooth functions. This
implies in particular that every homotopy class in [M, N] has a smooth
representative.

In the following C(M, N), denotes the space C(M, N) of continuous
maps M -~ N endowed with the compact open topology.

THEOREM A.3.1. Let M be a finite-dimensional a-compact CS-
manifold for s E N U {oo}. Then for all locally convex spaces 3 the space
C°° (M, 3) is dense in C(M,J)c. If f E C(M, 3) has compact support and
U is an open neighborhood of supp( f ), then each neighborhood of f in
C(M, h), contains a smooth function whose support is contained in U.
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Proof (based on [Hi76, Th. 2.2]). - First we observe that M permits
CS-partitions of unity. Further the local convexity of h is crucial for the

"partition of unity arguments" to work.

Let f E C(M, 3), locally finite open cover of M and Wa C 3
convex open 0-neighborhoods. Then there exists a subordinated locally
finite open cover (Ui)iEI of M and constant maps gi: such that for

all y E Ui n v, we have

Let be a partition of unity subordinated to and define

g : = Ei M ---+ 3. Then g E and on Va we have g - f E Wa
because Wa is convex.

If, in addition, supp( f ) is compact and contained in the open set U,
then we may assume that each set Ui is either contained in U or satisfies

Ui n For Ui f1 supp(f) = 0 we then put gi - 0, and the
assertion follows. D

COROLLARY A.3.2. - Let M be a finite-dimensional a-compact CS-
manifold open subset of the locally convex space
3, then the space C°°(M, V) is dense in C(M, V), - D

THEOREM A.3.3. - Let M and N be CS-manifolds with dim M  oc

and s E N u (oo). Then is dense in C (M, N) c. Let f E C(M, N)
and K C M such that f is smooth on M B K. Then there exists for each
neighborhood N of f in C(M, N), and each open neighborhood U of K in
M a smooth function 9 E N with f = g on M B U.

Proof. First we need a refinement of Theorem 2.5 in ~Hi76~ . Let
U C be open, 3 an s.c.l.c. space V C 3 open and f: U - V a C’’-map.
Further let K C U be closed and W C U open such that f is C~ on a
neighborhood of the closed subset K B W. Then the set of all functions
h E C’(U, V) which are CS on a neighborhood of K and coincide with f
on U B W intersects every neighborhood of f in C(U, V)c. For the proof we
may w.l.o.g. assume that V = 3, so that Theorem A.3.1 can be used. The
remaining arguments can be copied from [Hi76, Th. 2.5].

To conclude the proof, one uses that M has a countable open cover,
and then an inductive argument as in [Hi76, Th. 2.6]. The argument given
in [Hi76] shows in particular that if f is smooth outside of a compact
subset K of M and U an open neighborhood U of K, then we find in



1436

each neighborhood of f a smooth function g which coincides with f on
MBU. D

Remark A.3.4. - (a) If F is a locally convex space and X a compact
space, then C(X, F) is a locally convex space with respect to the topology of
uniform convergence. For each continuous seminorm p on F the prescription

defines a continuous seminorm on C(X, F), and the set of all these

seminorms defines the topology of compact convergence on C(X, F). It

is easy to verify that with respect to this topology the space C(X, F) is

sequentially complete if F has this property.

(b) If U C F is an open subset, then C(X, U) is an open subset of
C(X, F). Now let Uj C Fj, j = 1, 2, be open subsets of s.c.l.c. spaces and

U2 a smooth map. We consider the map

Then is smooth. The continuity follows from [NeOla, Lemma III.6]. For
each x E X and -~, 77 E C(X, Fi) we have

Since the integrand is continuous in ~0,1~ 2 x X, the limit exists uniformly
in X, hence in the space C(X, F2) . Therefore exists. Since

U1 x Fi - F2 is a continuous map, the first part of the proof
shows that

is continuous, so that cp x is C1. Iterating this argument shows that cp x is
C°° . 0

DEFINITION A.3.5. - (a) If G is a Lie group and X is a compact
space, then C(X, G), endowed with the topology of uniform convergence is
a Lie group with Lie algebra C(X, g). In view of Remark A.3.4(b), uTe only
have to see that inversion and multiplication in the canonical local charts
are smooth. The remaining arguments leading to the Lie group structure
on C(X, G) are a routine verification.
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(b) If G is a Lie group with Lie algebra g, then the tangent bundle
of G is a Lie group isomorphic to g x G, where G acts by the adjoint
representation on g (cf. [NeOla]). Iterating this procedure, we obtain a
Lie group structure on all iterated higher tangent bundles TnG which are
diffeomorphic to g2n -1 x G.

It follows in particular that for each finite-dimensional manifold M
and each n E No we obtain topological groups Therefore

the canonical inclusion map

leads to a natural topology on C°° (M, G) turning it into a topological
group. For compact manifolds M these groups can even be turned into Lie

groups with Lie algebra endowed with the topology of compact
convergence of all derivatives which coincides with the topology defined
above if uTe consider g as an additive Lie group. For details uTe refer to

0

Let G be a connected Lie group and M a compact smooth manifold.
In M we fix a base point xM and in any group we consider the unit element
e as the base point. We write G) C C°° (M, G) for the subgroup of
base point preserving maps and observe that

as Lie groups, where we identify G with the subgroup of constant maps.
This relation already leads to

In particular we have G)) because G is

connected. On the other hand we have for topological groups G and k E N
the relation

where Go denotes the identity component of G.

LEMMA A.3.6. - Let M be a compact manifold and G a Lie group.
Then C°° (M, G) is dense in C(M, G),. In particular every connected

component of the Lie group C(M, G)c contains a smooth map. Moreover,
uTe have
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Proof. As G is a topological group, the compact open topology on
C(M, G) coincides with the topology of uniform convergence which turns
C(M, G) into a Lie group with Lie algebra C(M, g) (Definition A.3.5). In
particular C(M, G) is locally arcwise connected, so that the first assertion
follows immediately from Theorem A.3.3.

To verify (A.3.3), we first observe that every smooth map f: M -~ G
which is sufficiently close to the identity is homotopic to the identity in

C°° (M, G) because its range lies in an open identity neighborhood diffeo-
morphic to an open convex set. Now homogeneity implies that C°° (M, G)
is locally connected with respect to the compact open topology, and hence
that its connected components are also open in the coarser compact open
topology. This implies that the connected components of C°° (M, G) are
closed in the compact open topology, and therefore that the closure of

C°° (M, G)o is open and closed in C(M, G), hence coincides with C(M, G)o
and satisfies (A.3.3). D

THEOREM A.3.7. - If M is a compact manifold and G a Lie group,
then the inclusion C°°(M, G) - C(M, G) induces isomorphisms of all
homotopy groups

If xM E M is a base point, then the same conclusion holds for the inclusion

C~(M, G) - C* (M, G) of the subgroups of base point preserving maps.

Proof. For 1~ = 0 the assertion follows from Lemma A.3.6. Next

we observe that for k &#x3E; 1 the inclusions

are continuous homomorphisms of Lie groups, where the inclusion

is an open embedding. On the level of the group of connected components,
we obtain with (A.3.2) the homomorphisms
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If f : Sk x M - G is a continuous map, then Lemma A.3.6 first implies that
every neighborhood of f contains a smooth map and that

Further every connected component of x M, G) and therefore ev-
ery connected component of C(Sk, C(M, G)o) contains an element of

C (Sk , CCXJ (M, G)o). This shows that the natural homomorphism

is a surjective, which implies that the homomorphism

is surjective for k G N.

To see that it is also injective, let U C G be an identity neighborhood
for which there exists a chart p: U - g whose range is an open convex
subset of g. If two continuous maps f, g E viewed as

elements of x M, G) ~ C(Sk, C(M, G)) are close in the sense that the
range of is contained in U, then the convexity
of p(U) implies the existence of a homotopy from the constant map to
I. g-1 in and hence, after multiplication with g on the
right, from f to g. This implies that

which implies that the homomorphism
also injective.

Remark A.3.8. - If G is a connected Fr6chet-Lie group, then

C°° (M, G) also is a Fr6chet-Lie group (cf. [GlOlb] and Definition A.3.5), so
that combining [Pa66] with Theorem A.3.7 even implies that the inclusion
C’ (M, C) C(M, G) is a homotopy equivalence. D
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