We study the spectral convergence of compact Riemannian manifolds in relation with the Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the limit spaces.
Nous étudions la convergence spectrale des variétés riemanniennes compactes par rapport à la distance de Gromov-Hausdorff et discutons des distances géodésiques et des formes d'énergie des espaces de limites.
Keywords: Laplace operator, energy form, heat kernel, spectral convergence, Gromov-Hausdorff distance
Mot clés : opérateur de Laplace, forme d'énergie, noyau de la chaleur, convergence spectrale, distance de Gromov-Hausdorff
Kasue, Atsushi 1
@article{AIF_2002__52_4_1219_0, author = {Kasue, Atsushi}, title = {Convergence of {Riemannian} manifolds and {Laplace} operators. {I}}, journal = {Annales de l'Institut Fourier}, pages = {1219--1257}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {4}, year = {2002}, doi = {10.5802/aif.1916}, zbl = {1040.53053}, mrnumber = {1927079}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1916/} }
TY - JOUR AU - Kasue, Atsushi TI - Convergence of Riemannian manifolds and Laplace operators. I JO - Annales de l'Institut Fourier PY - 2002 SP - 1219 EP - 1257 VL - 52 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1916/ DO - 10.5802/aif.1916 LA - en ID - AIF_2002__52_4_1219_0 ER -
%0 Journal Article %A Kasue, Atsushi %T Convergence of Riemannian manifolds and Laplace operators. I %J Annales de l'Institut Fourier %D 2002 %P 1219-1257 %V 52 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1916/ %R 10.5802/aif.1916 %G en %F AIF_2002__52_4_1219_0
Kasue, Atsushi. Convergence of Riemannian manifolds and Laplace operators. I. Annales de l'Institut Fourier, Volume 52 (2002) no. 4, pp. 1219-1257. doi : 10.5802/aif.1916. https://aif.centre-mersenne.org/articles/10.5802/aif.1916/
[1] Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl, Volume 4 (1994), pp. 239-258 | DOI | MR | Zbl
[2] Convergence for Yamabe metrics of positive scalar curvature with integral bound on curvature, Pacific J. Math, Volume 175 (1996), pp. 239-258 | MR | Zbl
[3] On embedding Riemannian manifolds in a Hilbert space using their heat kernels (1988) (Prépublication de I'Institut Fourier, No 109)
[4] Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal, Volume 4 (1994), pp. 373-398 | DOI | MR | Zbl
[5] A Kato type inequality for Riemannian submersion with totally geodesic fibers, Ann. Glob. Analysis and Geometry, Volume 4 (1986), pp. 273-289 | DOI | MR | Zbl
[6] A Saint-Venant principle for Dirichlet forms on discontinuous media, Ann. Mat. Pure Appl (4), Volume 169 (1995), pp. 125-181 | DOI | MR | Zbl
[7] Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de M. Berger (Luminy, 1992) (Sémin. Congr.), Volume 1 (1996), pp. 205-232 | Zbl
[8] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal, Volume 9 (1999), pp. 428-517 | DOI | MR | Zbl
[9] Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math, Volume 109 (1987), pp. 319-334 | DOI | MR | Zbl
[10] Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math, Volume 87 (1987), pp. 517-547 | DOI | MR | Zbl
[11] Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin-New York, 1994 | MR | Zbl
[12] Structures métriques pour les variétés riemanniennes, Cedic Fernand-Nathan, Paris, 1981 | MR | Zbl
[13] Heat kernel of a noncompact Riemannian manifold, Stochastic Analysis (Ithaca, NY, 1993) (Proc. Symposia in Pure Math), Volume 57 (1993), pp. 239-263 | Zbl
[14] Short time asymptotics and an approximation for the heat kernel of a singular diffusion, Itô's Stochastic Calculus and Probability Theory (1996), pp. 129-140 | Zbl
[15] Quasi conformal maps on metric spaces with controlled geometry, Acta Math, Volume 181 (1998), pp. 1-61 | DOI | Zbl
[16] Degenerating sequences of Riemannian metrics on a manifold and their Brownian motions, Diffusions in Analysis and Geometry (1990), pp. 293-312 | Zbl
[17] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J, Volume 53 (1986), pp. 503-523 | MR | Zbl
[18] Spectral convergence of Riemannian manifolds, Tohoku Math. J, Volume 46 (1994), pp. 147-179 | DOI | MR | Zbl
[19] Spectral convergence of Riemannian manifolds, II, Tohoku Math. J, Volume 48 (1996), pp. 71-120 | DOI | MR | Zbl
[20] Convergence of heat kernels on a compact manifold, Kyuushu J. Math, Volume 51 (1997), pp. 453-524 | DOI | MR | Zbl
[21] Spectral convergence of conformally immersed surfaces with bounded mean curvature (To appear in J. Geom. Anal.) | MR | Zbl
[22] Convergence of Riemannian manifolds and Laplace operators; II (in preparation) | Zbl
[23] Balls and metrics defined by vector fields I: Basic properties, Acta Math, Volume 55 (1985), pp. 103-147 | DOI | MR | Zbl
[24] Weak convergence of laws of stochastic processes on Riemannian manifolds, Probab. Theory Relat. Fields, Volume 119 (2001), pp. 529-557 | DOI | MR | Zbl
[25] Short-time asymptotics in Dirichlet spaces, Comm. Pure Appl. Math, Volume 54 (2001), pp. 259-293 | DOI | MR | Zbl
[26] A note on Poincaré, Sobolev and Harnack inequality, Duke Math. J., Int. Math. Res. Notices, Volume 2 (1992), pp. 27-38 | DOI | MR | Zbl
[27] Analysis on local Dirichlet spaces I. Recurrence,conservativeness and -Liouville properties, J. Reine Angew. Math., Volume 456 (1994), pp. 173-196 | DOI | MR | Zbl
[28] Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math, Volume 32 (1995), pp. 275-312 | MR | Zbl
[29] Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl, Volume 75 (1996), pp. 273-297 | MR | Zbl
[30] Degeneration of algebraic manifolds and the continuity of the spectrum of the Laplacian, Nagoya Math. J, Volume 146 (1997), pp. 83-129 | MR | Zbl
Cited by Sources: